Home
Class 12
MATHS
int(-1)^(1)(d)/(dx)[tan^(-1)((1)/(x))]dx...

`int_(-1)^(1)(d)/(dx)[tan^(-1)((1)/(x))]dx=`

A

`(pi)/(2)`

B

`(pi)/(4)`

C

`-(pi)/(2)`

D

`-(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-1}^{1} \frac{d}{dx} \left[ \tan^{-1} \left( \frac{1}{x} \right) \right] dx, \] we will follow these steps: ### Step 1: Differentiate the function inside the integral We need to find the derivative of \( \tan^{-1} \left( \frac{1}{x} \right) \). Using the chain rule, we have: \[ \frac{d}{dx} \left[ \tan^{-1} \left( \frac{1}{x} \right) \right] = \frac{1}{1 + \left( \frac{1}{x} \right)^2} \cdot \frac{d}{dx} \left( \frac{1}{x} \right). \] Calculating \( \frac{d}{dx} \left( \frac{1}{x} \right) \): \[ \frac{d}{dx} \left( \frac{1}{x} \right) = -\frac{1}{x^2}. \] Now substituting this back, we get: \[ \frac{d}{dx} \left[ \tan^{-1} \left( \frac{1}{x} \right) \right] = \frac{1}{1 + \frac{1}{x^2}} \cdot \left(-\frac{1}{x^2}\right). \] ### Step 2: Simplify the expression The term \( 1 + \frac{1}{x^2} \) can be rewritten as: \[ 1 + \frac{1}{x^2} = \frac{x^2 + 1}{x^2}. \] Thus, we have: \[ \frac{d}{dx} \left[ \tan^{-1} \left( \frac{1}{x} \right) \right] = -\frac{1}{x^2} \cdot \frac{x^2}{x^2 + 1} = -\frac{1}{x^2 + 1}. \] ### Step 3: Set up the integral Now we can substitute this back into our integral: \[ I = \int_{-1}^{1} -\frac{1}{x^2 + 1} \, dx. \] ### Step 4: Evaluate the integral This simplifies to: \[ I = -\int_{-1}^{1} \frac{1}{x^2 + 1} \, dx. \] The integral \( \int \frac{1}{x^2 + 1} \, dx \) is known to be \( \tan^{-1}(x) \). Thus, we evaluate: \[ I = -\left[ \tan^{-1}(x) \right]_{-1}^{1}. \] Calculating the limits: \[ \tan^{-1}(1) = \frac{\pi}{4}, \quad \tan^{-1}(-1) = -\frac{\pi}{4}. \] So, \[ I = -\left( \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) \right) = -\left( \frac{\pi}{4} + \frac{\pi}{4} \right) = -\frac{\pi}{2}. \] ### Final Result Thus, the value of the integral is: \[ I = -\frac{\pi}{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[tan^(-1)((ax-b)/(bx+a))]=

(d)/(dx)[tan^(-1)((1)/(2x)-(x)/(2))]=

(d)/(dx)[tan^(-1)((10x)/(4-6x^(2)))]=

d/(dx)tan^-1((1-x)/(1+x))=

(d)/(dx)[tan^(-1)((sinx)/(1+cosx))]=

(d)/(dx)[tan^(-1)sqrt((1+sinx)/(1-sinx))]=

(d)/(dx)[sec(tan^(-1)x)]=

d/(dx) [tan^(-1)(sqrt(x))] =

(d)/(dx)(tan^(-1)(birth x))

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

MARVEL PUBLICATION-INTEGRATION - DEFINITE INTEGRALS -MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)
  1. int(0)^(pi//2)(sin 2x)/(2+2sin^(2)x+cos^(2)x)dx=

    Text Solution

    |

  2. If int(0)^(1)(x+4)/(x^(2)+5)dx = a log ((6)/(5))+b tan^(-1)((1)/(sqrt(...

    Text Solution

    |

  3. int(-1)^(1)(d)/(dx)[tan^(-1)((1)/(x))]dx=

    Text Solution

    |

  4. If a, b, gt 0, then int(1)^(a)(1)/(x)dx + int(1)^(b)(1)/(x)dx=

    Text Solution

    |

  5. If int(0)^(1)(1)/(e^(x)+e^(-x))dx = tan^(-1)p, then : p =

    Text Solution

    |

  6. int(0)^(pi//2)(sin 8x.log(cot x))/(cos 2x)dx=

    Text Solution

    |

  7. int(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=

    Text Solution

    |

  8. int(0)^(pi)(cos x)/(x^(4)+(pi-x)^(4))dx=

    Text Solution

    |

  9. If I(n)=int(0)^(pi//4)tan^(n)x dx, where n ge 2, then : I(n-2)+I(n)=

    Text Solution

    |

  10. Find the value of int0^1x(1-x)^ndx

    Text Solution

    |

  11. If inta^b x^3dx=0,a n d"I f"inta^b x^2dx=2/3,"f i n dr e a lv a l u...

    Text Solution

    |

  12. Evaluate the following: int0^(pi//4) (sin^2 x \ cos^2 x)/(sin^3x + cos...

    Text Solution

    |

  13. If f(x)=f(4-x), g(x)+g(4-x)=3 and int(0)^(4)f(x)dx=2, then : int(0)^(4...

    Text Solution

    |

  14. If f(a-x)=f(x) and int(0)^(a//2)f(x)dx=p, then : int(0)^(a)f(x)dx=

    Text Solution

    |

  15. Evaluate: int(-1/2)^(1/2)cosxlog(1-x)/(1+x)dx

    Text Solution

    |

  16. int(-pi)^(pi)(1-x^(2))sin x cos^(2)x dx=

    Text Solution

    |

  17. If {:(f(x)=x", ...."x lt 1),(" "=x-1", ...." x ge 1","):} ...

    Text Solution

    |

  18. If 0 le alpha le 2pi and int(0)^(alpha)cos x dx = cos 2alpha, the : al...

    Text Solution

    |

  19. int(-2)^(3)[cot^(-1)((x-1)/(x+1))+cot^(-1)((x+1)/(x-1))]dx=

    Text Solution

    |

  20. If f(x)+f(pi-x)=1 and g(x)+g(pi-x)=1, then : int(0)^(pi)[f(x)+g(x)]dx=

    Text Solution

    |