Home
Class 12
MATHS
If a, b, gt 0, then int(1)^(a)(1)/(x)dx ...

If `a, b, gt 0`, then `int_(1)^(a)(1)/(x)dx + int_(1)^(b)(1)/(x)dx=`

A

`int_(1)^(a+1)(1)/(x)dx`

B

`int_(a)^(b)(1)/(x)dx`

C

`int_(1)^(ab)(1)/(x)dx`

D

`int_(1//a)^(1//b)x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the following expression: \[ \int_{1}^{a} \frac{1}{x} \, dx + \int_{1}^{b} \frac{1}{x} \, dx \] ### Step 1: Evaluate the first integral The first integral is: \[ \int_{1}^{a} \frac{1}{x} \, dx \] Using the formula for the integral of \( \frac{1}{x} \), we have: \[ \int \frac{1}{x} \, dx = \log x + C \] So, we evaluate the definite integral: \[ \int_{1}^{a} \frac{1}{x} \, dx = \left[ \log x \right]_{1}^{a} = \log a - \log 1 \] Since \( \log 1 = 0 \): \[ \int_{1}^{a} \frac{1}{x} \, dx = \log a \] ### Step 2: Evaluate the second integral Now, we evaluate the second integral: \[ \int_{1}^{b} \frac{1}{x} \, dx \] Using the same formula: \[ \int_{1}^{b} \frac{1}{x} \, dx = \left[ \log x \right]_{1}^{b} = \log b - \log 1 \] Again, since \( \log 1 = 0 \): \[ \int_{1}^{b} \frac{1}{x} \, dx = \log b \] ### Step 3: Combine the results Now we combine the results of both integrals: \[ \int_{1}^{a} \frac{1}{x} \, dx + \int_{1}^{b} \frac{1}{x} \, dx = \log a + \log b \] Using the properties of logarithms, we can simplify this: \[ \log a + \log b = \log(ab) \] ### Final Result Thus, the final result is: \[ \int_{1}^{a} \frac{1}{x} \, dx + \int_{1}^{b} \frac{1}{x} \, dx = \log(ab) \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(a)^(b)(1)/(x^(2))dx

int_(0)^(1)(x)/(x+1)dx=

int_(a)^(b)(|1-x|)/(1-x)dx=

int_(0)^(1)(1+2x)dx

int_(0)^(1)(1-x)^(9)dx=

int_(-1)^(1)x^(3)dx=0

If int_(-1)^(1)f(x)dx=0 then

int_(0)^(1)x sin(x-1)dx+int_(0)^(1)(1-x)sin xdx=

int_(0)^(1)cos^(-1)x dx=

Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b, "then " int_(0)^(a) f(x) dx +int_(0)^(b) f^(-1) (x) dx is equal to

MARVEL PUBLICATION-INTEGRATION - DEFINITE INTEGRALS -MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)
  1. If int(0)^(1)(x+4)/(x^(2)+5)dx = a log ((6)/(5))+b tan^(-1)((1)/(sqrt(...

    Text Solution

    |

  2. int(-1)^(1)(d)/(dx)[tan^(-1)((1)/(x))]dx=

    Text Solution

    |

  3. If a, b, gt 0, then int(1)^(a)(1)/(x)dx + int(1)^(b)(1)/(x)dx=

    Text Solution

    |

  4. If int(0)^(1)(1)/(e^(x)+e^(-x))dx = tan^(-1)p, then : p =

    Text Solution

    |

  5. int(0)^(pi//2)(sin 8x.log(cot x))/(cos 2x)dx=

    Text Solution

    |

  6. int(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=

    Text Solution

    |

  7. int(0)^(pi)(cos x)/(x^(4)+(pi-x)^(4))dx=

    Text Solution

    |

  8. If I(n)=int(0)^(pi//4)tan^(n)x dx, where n ge 2, then : I(n-2)+I(n)=

    Text Solution

    |

  9. Find the value of int0^1x(1-x)^ndx

    Text Solution

    |

  10. If inta^b x^3dx=0,a n d"I f"inta^b x^2dx=2/3,"f i n dr e a lv a l u...

    Text Solution

    |

  11. Evaluate the following: int0^(pi//4) (sin^2 x \ cos^2 x)/(sin^3x + cos...

    Text Solution

    |

  12. If f(x)=f(4-x), g(x)+g(4-x)=3 and int(0)^(4)f(x)dx=2, then : int(0)^(4...

    Text Solution

    |

  13. If f(a-x)=f(x) and int(0)^(a//2)f(x)dx=p, then : int(0)^(a)f(x)dx=

    Text Solution

    |

  14. Evaluate: int(-1/2)^(1/2)cosxlog(1-x)/(1+x)dx

    Text Solution

    |

  15. int(-pi)^(pi)(1-x^(2))sin x cos^(2)x dx=

    Text Solution

    |

  16. If {:(f(x)=x", ...."x lt 1),(" "=x-1", ...." x ge 1","):} ...

    Text Solution

    |

  17. If 0 le alpha le 2pi and int(0)^(alpha)cos x dx = cos 2alpha, the : al...

    Text Solution

    |

  18. int(-2)^(3)[cot^(-1)((x-1)/(x+1))+cot^(-1)((x+1)/(x-1))]dx=

    Text Solution

    |

  19. If f(x)+f(pi-x)=1 and g(x)+g(pi-x)=1, then : int(0)^(pi)[f(x)+g(x)]dx=

    Text Solution

    |

  20. int(0)^(pi//2)(1)/(sqrt(tan x)-sqrt(cot x))dx=

    Text Solution

    |