Home
Class 12
MATHS
int(0)^(pi)(cos x)/(x^(4)+(pi-x)^(4))dx=...

`int_(0)^(pi)(cos x)/(x^(4)+(pi-x)^(4))dx=`

A

0

B

`pi`

C

`(pi)/(4)`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\pi} \frac{\cos x}{x^4 + (\pi - x)^4} \, dx, \] we can use a property of definite integrals. This property states that \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, we have \( a = 0 \) and \( b = \pi \). Thus, we can rewrite the integral as follows: 1. **Step 1: Apply the property of definite integrals.** Let's substitute \( x \) with \( \pi - x \): \[ I = \int_{0}^{\pi} \frac{\cos(\pi - x)}{(\pi - x)^4 + x^4} \, dx. \] Since \( \cos(\pi - x) = -\cos x \), we can rewrite the integral: \[ I = \int_{0}^{\pi} \frac{-\cos x}{(\pi - x)^4 + x^4} \, dx. \] 2. **Step 2: Combine the two expressions for \( I \).** Now we have two expressions for \( I \): \[ I = \int_{0}^{\pi} \frac{\cos x}{x^4 + (\pi - x)^4} \, dx, \] and \[ I = \int_{0}^{\pi} \frac{-\cos x}{(\pi - x)^4 + x^4} \, dx. \] Adding these two equations gives: \[ 2I = \int_{0}^{\pi} \left( \frac{\cos x}{x^4 + (\pi - x)^4} - \frac{\cos x}{(\pi - x)^4 + x^4} \right) \, dx. \] Notice that the denominators are the same, so we can combine them: \[ 2I = \int_{0}^{\pi} \frac{\cos x - \cos x}{x^4 + (\pi - x)^4} \, dx = 0. \] 3. **Step 3: Solve for \( I \).** Since \( 2I = 0 \), we can conclude that: \[ I = 0. \] Thus, the value of the integral is \[ \boxed{0}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(cos^(4)x-sin^(4)x)dx=

int_(0)^(pi//4) cos^(2) x dx

int_(0)^( pi/4)(sin x-cos x)dx

Evaluate the following : int_(0)^(pi//4)(sin 2x)/(sin^(4)x+cos^(4)x)dx.

Evaluate :int_(0)^(2 pi)e^(x)cos((pi)/(4)+(x)/(2))dx

int_(0)^(pi//4)(cos^(2)x-cos^(4)x)dx

int_(0)^(pi) xsin x cos^(4)x dx=

MARVEL PUBLICATION-INTEGRATION - DEFINITE INTEGRALS -MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)
  1. int(0)^(pi//2)(sin 8x.log(cot x))/(cos 2x)dx=

    Text Solution

    |

  2. int(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=

    Text Solution

    |

  3. int(0)^(pi)(cos x)/(x^(4)+(pi-x)^(4))dx=

    Text Solution

    |

  4. If I(n)=int(0)^(pi//4)tan^(n)x dx, where n ge 2, then : I(n-2)+I(n)=

    Text Solution

    |

  5. Find the value of int0^1x(1-x)^ndx

    Text Solution

    |

  6. If inta^b x^3dx=0,a n d"I f"inta^b x^2dx=2/3,"f i n dr e a lv a l u...

    Text Solution

    |

  7. Evaluate the following: int0^(pi//4) (sin^2 x \ cos^2 x)/(sin^3x + cos...

    Text Solution

    |

  8. If f(x)=f(4-x), g(x)+g(4-x)=3 and int(0)^(4)f(x)dx=2, then : int(0)^(4...

    Text Solution

    |

  9. If f(a-x)=f(x) and int(0)^(a//2)f(x)dx=p, then : int(0)^(a)f(x)dx=

    Text Solution

    |

  10. Evaluate: int(-1/2)^(1/2)cosxlog(1-x)/(1+x)dx

    Text Solution

    |

  11. int(-pi)^(pi)(1-x^(2))sin x cos^(2)x dx=

    Text Solution

    |

  12. If {:(f(x)=x", ...."x lt 1),(" "=x-1", ...." x ge 1","):} ...

    Text Solution

    |

  13. If 0 le alpha le 2pi and int(0)^(alpha)cos x dx = cos 2alpha, the : al...

    Text Solution

    |

  14. int(-2)^(3)[cot^(-1)((x-1)/(x+1))+cot^(-1)((x+1)/(x-1))]dx=

    Text Solution

    |

  15. If f(x)+f(pi-x)=1 and g(x)+g(pi-x)=1, then : int(0)^(pi)[f(x)+g(x)]dx=

    Text Solution

    |

  16. int(0)^(pi//2)(1)/(sqrt(tan x)-sqrt(cot x))dx=

    Text Solution

    |

  17. If int(-3)^(2)f(x)dx=2 and int(2)^(5)[5+f(x)]dx=9, then : int(5)^(-3)f...

    Text Solution

    |

  18. If (d)/(dx)[g(x)]=f(x), then : int(a)^(b)f(x)g(x)dx=

    Text Solution

    |

  19. If int(0)^(1)f(x)dx=1, int(0)^(1)x f(x)dx=a and int(0)^(1)x^(2)f(x)dx=...

    Text Solution

    |

  20. If int(0)^(a)(1)/(1+4x^(2))dx=(pi)/(8), then a =

    Text Solution

    |