Home
Class 12
MATHS
If f(a-x)=f(x) and int(0)^(a//2)f(x)dx=p...

If `f(a-x)=f(x)` and `int_(0)^(a//2)f(x)dx=p`, then : `int_(0)^(a)f(x)dx=`

A

0

B

p

C

2p

D

3p

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given properties of the function \( f \) and the integral. ### Step 1: Understand the given property We are given that \( f(a - x) = f(x) \). This means that the function \( f \) is symmetric about \( x = \frac{a}{2} \). ### Step 2: Set up the integral from 0 to a We need to evaluate the integral \( \int_0^a f(x) \, dx \). We can split this integral into two parts: \[ \int_0^a f(x) \, dx = \int_0^{\frac{a}{2}} f(x) \, dx + \int_{\frac{a}{2}}^a f(x) \, dx \] ### Step 3: Change of variable in the second integral For the second integral, we can use the substitution \( x = a - t \). When \( x = \frac{a}{2} \), \( t = \frac{a}{2} \) and when \( x = a \), \( t = 0 \). Thus, we have: \[ \int_{\frac{a}{2}}^a f(x) \, dx = \int_{\frac{a}{2}}^0 f(a - t) \, (-dt) = \int_0^{\frac{a}{2}} f(a - t) \, dt \] Using the property \( f(a - t) = f(t) \), we can rewrite this as: \[ \int_0^{\frac{a}{2}} f(a - t) \, dt = \int_0^{\frac{a}{2}} f(t) \, dt \] ### Step 4: Combine the integrals Now we can combine the two integrals: \[ \int_0^a f(x) \, dx = \int_0^{\frac{a}{2}} f(x) \, dx + \int_0^{\frac{a}{2}} f(x) \, dx = 2 \int_0^{\frac{a}{2}} f(x) \, dx \] Since we know that \( \int_0^{\frac{a}{2}} f(x) \, dx = p \), we can substitute this into our equation: \[ \int_0^a f(x) \, dx = 2p \] ### Final Answer Thus, the value of the integral \( \int_0^a f(x) \, dx \) is: \[ \int_0^a f(x) \, dx = 2p \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

If f(x) = f(a+x) and int_(0)^(a) f(x) dx = k, "then" int _(0)^(na) f(x) dx is equal to

If f(2-x)=f(2+x),f(4+x)=f(4-x) and int_(0)^(2)f(x)dx=5 then int_(0)^(50)f(x)dx is

If int_(0)^(a)f(x)dx=10 ,then Evaluate int_(0)^(a)f(a-x)dx

If int_(0)^(a)f(x)dx=10 ,then Evaluate int_(0)^(a)f(a-x)dx

If f(x)=f(4-x), g(x)+g(4-x)=3 and int_(0)^(4)f(x)dx=2 , then : int_(0)^(4)f(x)g(x)dx=

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx If int_(0)^(a//2)f(x)dx=p," then "int_(0)^(a)f(x)dx is equal to

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

Property 7: Let f(x) be a continuous function of x defined on [0;a] such that f(a-x)=f(x) then int_(0)^(a)xf(x)dx=(a)/(2)int_(0)^(a)f(x)dx

If int_(0)^(1)f(x)dx=1, int_(0)^(1)x f(x)dx=a and int_(0)^(1)x^(2)f(x)dx=a^(2) , then : int_(0)^(1)(a-x)^(2)f(x)dx=

MARVEL PUBLICATION-INTEGRATION - DEFINITE INTEGRALS -MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)
  1. Evaluate the following: int0^(pi//4) (sin^2 x \ cos^2 x)/(sin^3x + cos...

    Text Solution

    |

  2. If f(x)=f(4-x), g(x)+g(4-x)=3 and int(0)^(4)f(x)dx=2, then : int(0)^(4...

    Text Solution

    |

  3. If f(a-x)=f(x) and int(0)^(a//2)f(x)dx=p, then : int(0)^(a)f(x)dx=

    Text Solution

    |

  4. Evaluate: int(-1/2)^(1/2)cosxlog(1-x)/(1+x)dx

    Text Solution

    |

  5. int(-pi)^(pi)(1-x^(2))sin x cos^(2)x dx=

    Text Solution

    |

  6. If {:(f(x)=x", ...."x lt 1),(" "=x-1", ...." x ge 1","):} ...

    Text Solution

    |

  7. If 0 le alpha le 2pi and int(0)^(alpha)cos x dx = cos 2alpha, the : al...

    Text Solution

    |

  8. int(-2)^(3)[cot^(-1)((x-1)/(x+1))+cot^(-1)((x+1)/(x-1))]dx=

    Text Solution

    |

  9. If f(x)+f(pi-x)=1 and g(x)+g(pi-x)=1, then : int(0)^(pi)[f(x)+g(x)]dx=

    Text Solution

    |

  10. int(0)^(pi//2)(1)/(sqrt(tan x)-sqrt(cot x))dx=

    Text Solution

    |

  11. If int(-3)^(2)f(x)dx=2 and int(2)^(5)[5+f(x)]dx=9, then : int(5)^(-3)f...

    Text Solution

    |

  12. If (d)/(dx)[g(x)]=f(x), then : int(a)^(b)f(x)g(x)dx=

    Text Solution

    |

  13. If int(0)^(1)f(x)dx=1, int(0)^(1)x f(x)dx=a and int(0)^(1)x^(2)f(x)dx=...

    Text Solution

    |

  14. If int(0)^(a)(1)/(1+4x^(2))dx=(pi)/(8), then a =

    Text Solution

    |

  15. int(0)^(pi//2)((pi)/(4)-x)/(sqrt(sin x)+ sqrt(cos x))dx=

    Text Solution

    |

  16. int(-pi//2)^(pi//2)sin (|x|)dx=

    Text Solution

    |

  17. int(-pi//2)^(pi//2)(1)/(1+e^(sin x))dx=

    Text Solution

    |

  18. The value of the definite integral int0^1(1/(x^2+2xcosalpha+1))dx for ...

    Text Solution

    |

  19. If int(0)^(a)(g(x))/(f(x)+f(a-x))dx=0, then

    Text Solution

    |

  20. int(1)^(e )x^(x)dx+ int(1)^(e )x^(x)log x dx=

    Text Solution

    |