Home
Class 12
MATHS
If (d)/(dx)[g(x)]=f(x), then : int(a)^(b...

If `(d)/(dx)[g(x)]=f(x)`, then : `int_(a)^(b)f(x)g(x)dx=`

A

`(1)/(2){[f(b)]^(2)-[f(a)]^(2)}`

B

`f(b)-f(a)`

C

`g(b)-g(a)`

D

`(1)/(2){[g(b)]^(2)-[g(a)]^(2)}`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

If (d)/(dx)[f(x)]=f(x), then intf(x)[g'(x)+g''(x)]dx=

if (d)/(dx)f(x)=g(x), find the value of int_(a)^(b)f(x)g(x)dx

If (d)/(dx)f(x)=g(x), then int f(x)g(x)dx is equal to:

If f(x)=f(4-x), g(x)+g(4-x)=3 and int_(0)^(4)f(x)dx=2 , then : int_(0)^(4)f(x)g(x)dx=

int_a^b[d/dx(f(x))]dx

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

If (d)/(dx)f(x)=g(x) for a le x le b then, int_(a)^(b) f(x) g(x) dx equals

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx If f(a+b-x)=f(x) , then int_(a)^(b)xf(x)dx is

If f and g are continuous functions on [0,a] such that f(x)=f(a-x) and g(x)+g(a-x)=2 then show that int_(0)^(a)f(x)g(x)dx=int_(0)^(a)f(x)dx

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx int_(0)^(a)f(x)dx=p" then " int_(0)^(a)f(x)g(x)dx is