Home
Class 12
MATHS
If int(0)^(a)(1)/(1+4x^(2))dx=(pi)/(8), ...

If `int_(0)^(a)(1)/(1+4x^(2))dx=(pi)/(8)`, then a =

A

`(pi)/(2)`

B

`(1)/(2)`

C

`(pi)/(4)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral equation \( \int_{0}^{a} \frac{1}{1 + 4x^2} \, dx = \frac{\pi}{8} \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int_{0}^{a} \frac{1}{1 + 4x^2} \, dx \] We can rewrite the integrand: \[ \frac{1}{1 + 4x^2} = \frac{1}{1 + (2x)^2} \] This allows us to recognize that we can use the arctangent function for integration. ### Step 2: Use a Substitution We can use the substitution \( u = 2x \), which gives us \( du = 2 \, dx \) or \( dx = \frac{du}{2} \). The limits of integration change as follows: - When \( x = 0 \), \( u = 0 \) - When \( x = a \), \( u = 2a \) Now, we rewrite the integral: \[ \int_{0}^{a} \frac{1}{1 + 4x^2} \, dx = \int_{0}^{2a} \frac{1}{1 + u^2} \cdot \frac{du}{2} = \frac{1}{2} \int_{0}^{2a} \frac{1}{1 + u^2} \, du \] ### Step 3: Evaluate the Integral The integral \( \int \frac{1}{1 + u^2} \, du \) is known to be \( \tan^{-1}(u) \). Therefore, we have: \[ \frac{1}{2} \int_{0}^{2a} \frac{1}{1 + u^2} \, du = \frac{1}{2} \left[ \tan^{-1}(u) \right]_{0}^{2a} = \frac{1}{2} \left( \tan^{-1}(2a) - \tan^{-1}(0) \right) \] Since \( \tan^{-1}(0) = 0 \), this simplifies to: \[ \frac{1}{2} \tan^{-1}(2a) \] ### Step 4: Set Up the Equation Now we set this equal to \( \frac{\pi}{8} \): \[ \frac{1}{2} \tan^{-1}(2a) = \frac{\pi}{8} \] ### Step 5: Solve for \( \tan^{-1}(2a) \) Multiplying both sides by 2 gives: \[ \tan^{-1}(2a) = \frac{\pi}{4} \] ### Step 6: Find \( 2a \) The value of \( \tan^{-1}(2a) = \frac{\pi}{4} \) implies: \[ 2a = 1 \] ### Step 7: Solve for \( a \) Dividing both sides by 2 gives: \[ a = \frac{1}{2} \] Thus, the final answer is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

If int_0^a (1)/(1+4x^(2))dx=(pi)/(8) , then 2a =

int_(0)^( pi/8)(1)/(1+4x^(2))dx=?

int_(0)^(1)(1)/(x^(2)+4x+5)dx =

int_(0)^(1)(log|1+x|)/(1+x^(2))dx=(pi)/(8)log2

int_(0)^( pi/2)(x)/((1-x^(2)))dx

int_(0)^( pi/4)(1)/(cos^(2)x)dx

int_(0)^(pi//4) (dx)/(1+x^(2))

If int_0^a1/(1+4x^2)dx=\ pi/8 , then a equals pi/2 b. pi/4 c. 1/2 d. 1

int_(0)^( pi/2)(1)/(1+cot^(2)x)dx=?

int_(0)^(pi//2)(1)/(1+tan^(3)x)dx=