Home
Class 12
MATHS
int(-pi//2)^(pi//2)sin (|x|)dx=...

`int_(-pi//2)^(pi//2)sin (|x|)dx=`

A

1

B

2

C

`-1`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(|x|) \, dx \), we can follow these steps: ### Step 1: Understand the function The function \( \sin(|x|) \) means that for negative values of \( x \), the function will reflect the positive values. Therefore, we can split the integral into two parts: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(|x|) \, dx = \int_{-\frac{\pi}{2}}^{0} \sin(-x) \, dx + \int_{0}^{\frac{\pi}{2}} \sin(x) \, dx \] ### Step 2: Simplify the integral Since \( \sin(-x) = -\sin(x) \), we can rewrite the first integral: \[ \int_{-\frac{\pi}{2}}^{0} \sin(-x) \, dx = -\int_{-\frac{\pi}{2}}^{0} \sin(x) \, dx \] Thus, we have: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(|x|) \, dx = -\int_{-\frac{\pi}{2}}^{0} \sin(x) \, dx + \int_{0}^{\frac{\pi}{2}} \sin(x) \, dx \] ### Step 3: Change the limits of the first integral We can change the variable in the first integral. Let \( u = -x \), then \( du = -dx \). When \( x = -\frac{\pi}{2} \), \( u = \frac{\pi}{2} \) and when \( x = 0 \), \( u = 0 \): \[ -\int_{-\frac{\pi}{2}}^{0} \sin(x) \, dx = \int_{0}^{\frac{\pi}{2}} \sin(u) \, du \] So now we can combine the integrals: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(|x|) \, dx = \int_{0}^{\frac{\pi}{2}} \sin(x) \, dx + \int_{0}^{\frac{\pi}{2}} \sin(x) \, dx = 2 \int_{0}^{\frac{\pi}{2}} \sin(x) \, dx \] ### Step 4: Evaluate the integral Now we need to evaluate \( \int_{0}^{\frac{\pi}{2}} \sin(x) \, dx \): \[ \int \sin(x) \, dx = -\cos(x) + C \] Thus, \[ \int_{0}^{\frac{\pi}{2}} \sin(x) \, dx = \left[-\cos(x)\right]_{0}^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) - (-\cos(0)) = 0 - (-1) = 1 \] ### Step 5: Final calculation Now substituting back: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(|x|) \, dx = 2 \cdot 1 = 2 \] ### Final Answer Thus, the value of the integral is: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin(|x|) \, dx = 2 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//2)^(pi//2)sin^(7)x dx=

Evaluate : int_(-pi//2)^(pi//2) |sin x|dx

int _(-pi//2)^(pi//2) sin | x | dx is equal to

Evaluate: int_(-pi/2)^( pi/2)|sin x|dx

The value of l = int _(-pi//2)^(pi//2) | sin x | dx is

int_(-pi//2)^(pi//2)"sin"|x|dx is equal to 1 (b) 2 (c) -1 (d) -2

Find our value of I = int_(-pi//2)^(pi//2) sin 2x dx :

Read the following text and answer the followig questions on the basis of the same : int_(-pi//2)^(pi//2) sin^(3)x dx =

int_(-pi/2)^(pi/2) sin^(2) x dx