Home
Class 12
MATHS
If int(0)^(a)(g(x))/(f(x)+f(a-x))dx=0, t...

If `int_(0)^(a)(g(x))/(f(x)+f(a-x))dx=0`, then

A

g (x) is odd

B

`f(x)=f(a-x)`

C

`g(x)=-g(a-x)`

D

`f(a-x)=g(x)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(a)(f(x))/(f(x)+f(a-x))dx=

int_(0)^(a)f(x)dx

The integral int_(0)^(a) (g(x))/(f(x)+f(a-x))dx vanishes, if

int_(0)^(a)f(x)dx=

int_(0)^(a) (f(a+x) + f(a-x) ) dx =

int_(0)^(a)[f(x)+f(a-x)]dx=

If int_(0)^(2a) f(x)dx=int_(0)^(2a) f(x)dx , then

If : int_(0)^(2a)f(x)dx=2.int_(0)^(a)f(x)dx , then :

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=