Home
Class 12
MATHS
int(0)^(1)(dx)/([ax+(1-x)b]^(2))=...

`int_(0)^(1)(dx)/([ax+(1-x)b]^(2))=`

A

ab

B

`(a)/(b)`

C

`(b)/(a)`

D

`(1)/(ab)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{1} \frac{dx}{(ax + (1-x)b)^2} \] we will follow these steps: ### Step 1: Rewrite the integrand First, we rewrite the expression in the denominator: \[ ax + (1-x)b = ax + b - bx = (a-b)x + b \] Thus, we can express the integral as: \[ I = \int_{0}^{1} \frac{dx}{((a-b)x + b)^2} \] ### Step 2: Substitution Next, we will use the substitution: \[ t = (a-b)x + b \] Now we differentiate \(t\) with respect to \(x\): \[ \frac{dt}{dx} = a - b \quad \Rightarrow \quad dx = \frac{dt}{a-b} \] ### Step 3: Change the limits of integration We need to change the limits of integration according to our substitution: - When \(x = 0\): \[ t = (a-b) \cdot 0 + b = b \] - When \(x = 1\): \[ t = (a-b) \cdot 1 + b = a \] So, the new limits of integration are from \(b\) to \(a\). ### Step 4: Substitute into the integral Now we substitute \(t\) and \(dx\) into the integral: \[ I = \int_{b}^{a} \frac{1}{t^2} \cdot \frac{dt}{a-b} \] This simplifies to: \[ I = \frac{1}{a-b} \int_{b}^{a} \frac{dt}{t^2} \] ### Step 5: Evaluate the integral The integral \(\int \frac{dt}{t^2}\) is: \[ \int \frac{dt}{t^2} = -\frac{1}{t} \] Now we evaluate it from \(b\) to \(a\): \[ \int_{b}^{a} \frac{dt}{t^2} = \left[-\frac{1}{t}\right]_{b}^{a} = -\frac{1}{a} + \frac{1}{b} = \frac{1}{b} - \frac{1}{a} \] ### Step 6: Substitute back into the expression for \(I\) Now substituting this back into our expression for \(I\): \[ I = \frac{1}{a-b} \left(\frac{1}{b} - \frac{1}{a}\right) \] ### Step 7: Simplify the expression We can simplify this further: \[ I = \frac{1}{a-b} \cdot \frac{a-b}{ab} = \frac{1}{ab} \] ### Final Result Thus, the value of the integral is: \[ I = \frac{1}{ab} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(dx)/((1+x^(2))

int_(0)^(a)(dx)/((ax+a^(2)-x^(2)))

int_(0)^(a)(dx)/(sqrt(ax-x^(2)))

If int_(0)^(1)(dx)/((1+x)sqrt(1-x^(2)))=(a)/(b) , then

int_(0)^(1)(1+2x)dx

int_(0)^(1)(dx)/((x-a)(x-b))=

int_(0)^(1)(x-1)/(x^(2)-1)dx

int_(0)^(1)(x+1)/(x^(2)+1)dx

int_(0)^(1)(2-x^(2))/(1+x^(2))dx=