Home
Class 12
MATHS
If I(1)=int(a)^(1-a)x.e^(x(1-x))dx and...

If `I_(1)=int_(a)^(1-a)x.e^(x(1-x))dx`
and `I_(2)=int_(a)^(1-a)e^(x(1-x))dx`,
then `I_(1):I_(2) =`

A

1

B

`1:2`

C

0

D

2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

I=int_(0)^(1)e^(x^(2)-x)dx then

If I_(1)=int_(1-x)^(k) x sin{x(1-x)}dx and I_(2)=int_(1-x)^(k) sin{x(1-x)}dx , then

If I_(1)=int_(0)^(1)(e^(x))/(1+x)dx aand I_(2)=int_(0)^(1)(x^(2))/(e^(x^(3))(2-x^(3)))dx then (I_(1))/(I_(2)) is

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

If f(x)=e^x/(1+e^x), I_1=int_(f(-a))^(f(a)) xg(x(1-x))dx and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx , then I_2/I_1 = (A) -1 (B) -3 (C) 2 (D) 1

I=int_(0)^(1)((1+x)/(2-x))dx

If I_(1)=int_(0)^((pi)/(2))(x)/(sin x)dx and I_(2)=int_(0)^(1)(tan^(-1)x)/(x)dx, then (I_(1))/(I_(2))=(A)1(B)(1)/(2) (C) 2 (D) (pi)/(2)

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .

I=int(1-x^(2))/(x(1-2x))dx

If I_(1)=int_(n)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then