Home
Class 12
MATHS
int(-pi)^(pi)sin^(2)x.cos^(2)x dx=...

`int_(-pi)^(pi)sin^(2)x.cos^(2)x dx=`

A

0

B

`int_(0)^(pi//2)sin^(2)x.cos^(2)x dx`

C

`4 int_(0)^(pi//2)sin^(2)x.cos^(2)x dx`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-\pi}^{\pi} \sin^2 x \cos^2 x \, dx \), we can follow these steps: ### Step 1: Define the function Let \( f(x) = \sin^2 x \cos^2 x \). ### Step 2: Check for even function We check if \( f(-x) = f(x) \): \[ f(-x) = \sin^2(-x) \cos^2(-x) = \sin^2 x \cos^2 x = f(x) \] Since \( f(-x) = f(x) \), \( f(x) \) is an even function. ### Step 3: Use the property of even functions For even functions, we can simplify the integral: \[ \int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx \] Thus, \[ \int_{-\pi}^{\pi} \sin^2 x \cos^2 x \, dx = 2 \int_{0}^{\pi} \sin^2 x \cos^2 x \, dx \] ### Step 4: Simplify the integral We can further simplify \( \sin^2 x \cos^2 x \): \[ \sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x) \] So, \[ \int_{0}^{\pi} \sin^2 x \cos^2 x \, dx = \frac{1}{4} \int_{0}^{\pi} \sin^2(2x) \, dx \] ### Step 5: Use the identity for \( \sin^2 \) Using the identity \( \sin^2 \theta = \frac{1 - \cos(2\theta)}{2} \): \[ \int_{0}^{\pi} \sin^2(2x) \, dx = \int_{0}^{\pi} \frac{1 - \cos(4x)}{2} \, dx \] This can be split into two integrals: \[ = \frac{1}{2} \int_{0}^{\pi} 1 \, dx - \frac{1}{2} \int_{0}^{\pi} \cos(4x) \, dx \] ### Step 6: Evaluate the integrals The first integral is straightforward: \[ \int_{0}^{\pi} 1 \, dx = \pi \] The second integral evaluates to zero, since the integral of \( \cos(4x) \) over a complete period is zero: \[ \int_{0}^{\pi} \cos(4x) \, dx = 0 \] ### Step 7: Combine results Thus, \[ \int_{0}^{\pi} \sin^2(2x) \, dx = \frac{1}{2} \cdot \pi - 0 = \frac{\pi}{2} \] ### Step 8: Substitute back into the integral Now we substitute back: \[ \int_{0}^{\pi} \sin^2 x \cos^2 x \, dx = \frac{1}{4} \cdot \frac{\pi}{2} = \frac{\pi}{8} \] ### Step 9: Final result Finally, we have: \[ \int_{-\pi}^{\pi} \sin^2 x \cos^2 x \, dx = 2 \cdot \frac{\pi}{8} = \frac{\pi}{4} \] Thus, the final answer is: \[ \int_{-\pi}^{\pi} \sin^2 x \cos^2 x \, dx = \frac{\pi}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(pi//2)sin^(4)x cos^(2)x dx=(pi)/(32) , then int_(0)^(pi//2)sin^(2)x cos^(4)x dx=

int_(-pi//2)^(pi//2)(sin^(2)x.cos^(2)x(sin x+cos x))dx=

int_(0)^(pi) x sin x. cos^(2) x dx

int_(-pi//2)^(pi//2) sin^(2)x cos^(2) x(sin xcos x)dx=

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^( pi/2)sin^(2)x cos x dx

int_(-pi)^(pi)(1-x^(2))sin x cos^(2)x dx=

int_(0)^(pi/2)(sin^(2)x*cos x)dx=