Home
Class 12
MATHS
int(0)^(pi//2)(dx)/(2+cos x)=...

`int_(0)^(pi//2)(dx)/(2+cos x)=`

A

`(1)/(sqrt(3)).tan^(-1)((1)/(sqrt(3)))`

B

`sqrt(3).tan^(-1)(sqrt(3))`

C

`(2)/(sqrt(3)).tan^(-1)((1)/(sqrt(3)))`

D

`2sqrt(3).tan^(-1)(sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{2 + \cos x} \] we will follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{2 + \cos x} \] ### Step 2: Use a Trigonometric Identity Recall the identity for cosine: \[ \cos x = 2 \cos^2\left(\frac{x}{2}\right) - 1 \] Substituting this into the integral gives: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{2 + (2 \cos^2\left(\frac{x}{2}\right) - 1)} = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + 2 \cos^2\left(\frac{x}{2}\right)} \] ### Step 3: Change of Variables Let \( t = \tan\left(\frac{x}{2}\right) \). Then, we have: \[ dx = \frac{2}{1 + t^2} dt \] Also, when \( x = 0 \), \( t = 0 \) and when \( x = \frac{\pi}{2} \), \( t = 1 \). Substituting these into the integral gives: \[ I = \int_{0}^{1} \frac{\frac{2}{1+t^2} dt}{1 + 2\left(\frac{1-t^2}{1+t^2}\right)} = \int_{0}^{1} \frac{2 dt}{(1+t^2)(1 + 2\frac{1-t^2}{1+t^2})} \] ### Step 4: Simplify the Denominator Simplifying the denominator: \[ 1 + 2\frac{1-t^2}{1+t^2} = \frac{(1+t^2) + 2(1-t^2)}{1+t^2} = \frac{3 - t^2}{1+t^2} \] Thus, the integral becomes: \[ I = \int_{0}^{1} \frac{2(1+t^2) dt}{(1+t^2)(3-t^2)} = \int_{0}^{1} \frac{2 dt}{3 - t^2} \] ### Step 5: Evaluate the Integral Now, we can evaluate the integral: \[ I = 2 \int_{0}^{1} \frac{dt}{3 - t^2} \] Using the formula for the integral of \( \frac{1}{a^2 - x^2} \): \[ \int \frac{dx}{a^2 - x^2} = \frac{1}{a} \tan^{-1}\left(\frac{x}{\sqrt{a^2 - x^2}}\right) + C \] In our case, \( a^2 = 3 \), so \( a = \sqrt{3} \): \[ I = 2 \cdot \frac{1}{\sqrt{3}} \left[ \tan^{-1}\left(\frac{t}{\sqrt{3}}\right) \right]_{0}^{1} \] Calculating the limits: \[ = \frac{2}{\sqrt{3}} \left( \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) - \tan^{-1}(0) \right) = \frac{2}{\sqrt{3}} \cdot \frac{\pi}{6} \] ### Step 6: Final Result Thus, we have: \[ I = \frac{\pi}{3\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) (dx)/(1+2 cos x)

int_(0)^(pi//2)(1)/(2+cos x)dx=

int_(0)^(pi/2)(x)/(1+cos x)dx =

int_(0)^((pi)/(2))(dx)/(1+2cos x)

What is int_(0)^(pi//2) (dx)/(a^(2) cos^(2) x+ b^(2) sin^(2) x) equal to ?

Consider the integral int_(0)^(2 pi)(dx)/(5-2cos x) making the substitution tan((x)/(2))=t, we have I=int_(0)^(2 pi)(dx)/(5-2cos x)=int_(0)^(0)(2dt)/((1+t^(2))[5-2(1-t^(2))/(1+t^(2))])=0 The result functive and consequently the integral of this functive and consequently the integral of this functake.

int_(0)^(pi//2) x^(2) cos x dx

int_(0)^(pi//2)(dx)/((1+cos^(2)x))

int_(0)^(pi//2)(dx)/((4+9cos^(2)x))

Evaluate the following : int_(0)^(pi//2)(dx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)

MARVEL PUBLICATION-INTEGRATION - DEFINITE INTEGRALS -MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)
  1. inta^b(logx)/x\ dx=1/2log(a b)\ log(b/a)

    Text Solution

    |

  2. int(0)^(pi//2)sin x.sin 2x dx=

    Text Solution

    |

  3. int(0)^(pi//2)(dx)/(2+cos x)=

    Text Solution

    |

  4. int(0)^(a)(x)/(sqrt(a^(2)+x^(2)))dx

    Text Solution

    |

  5. int(0)^(pi//2)(cos x)/(1+sin x + cos x)dx=

    Text Solution

    |

  6. int(0)^(pi//2)(sin x.cos x)/(1+sin^(4)x)dx=

    Text Solution

    |

  7. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  8. If : x(x^(4)+1).f(x)=1, then : int(1)^(2)f(x)dx=

    Text Solution

    |

  9. int(0) ^(pi//2) ((sin x +cos x )^(2))/sqrt(1+ sin 2x)dx =

    Text Solution

    |

  10. If : int(0)^(2a)f(x)dx=2.int(0)^(a)f(x)dx, then :

    Text Solution

    |

  11. If I = int(0)^(pi//4) sin^(2) x" "dx and J = int(0)^(pi//4)cos^(2)x" "...

    Text Solution

    |

  12. int(-1)^(1)(sqrt(1+x+x^(2))-sqrt(1-x+x^(2)))dx=

    Text Solution

    |

  13. Evaluate: int0^(pi/2)log((4+3sinx)/(4+3cosx))dx

    Text Solution

    |

  14. Suppose f is such that f(-x)=-f(x) for every real x and int0^1 f(x) dx...

    Text Solution

    |

  15. If f(x) = tan x - tan^(3) x + tan^(5) x - ….oo with 0 lt x lt pi/4 ...

    Text Solution

    |

  16. int(1/n)^((an-1)/n) sqrt(x)/(sqrt(a-x)+sqrt(x))dx= (A) a/2 (B) (na+2)/...

    Text Solution

    |

  17. Let a, b and c be non - zero real numbers such that int (0)^(3) (3ax...

    Text Solution

    |

  18. lim(n to oo)[(n)/(1+n^(2))+(n)/(4+n^(2))+(n)/(9+n^(2))+…+(1)/(2n^2)]=

    Text Solution

    |

  19. Evaluate lim(n->oo) [1^2/(n^3+1^3) + 2^2/(n^3+2^3) +3^2/(n^3+3^3) +......

    Text Solution

    |

  20. lim(n->oo)1/nsum(r=1)^(2n)r/(sqrt(n^2+r^2)) equals

    Text Solution

    |