Home
Class 12
MATHS
int(pi//4)^(3pi//4)(dx)/(1+cos x)=...

`int_(pi//4)^(3pi//4)(dx)/(1+cos x)=`

A

2

B

`-2`

C

`(1)/(2)`

D

`-(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x} \] we will use a property of definite integrals. The property states that \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] ### Step 1: Apply the property of definite integrals Let’s denote the limits \( a = \frac{\pi}{4} \) and \( b = \frac{3\pi}{4} \). Thus, we have: \[ a + b = \frac{\pi}{4} + \frac{3\pi}{4} = \pi \] Using the property, we can rewrite the integral: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x} = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos(\pi - x)} \] ### Step 2: Simplify \( \cos(\pi - x) \) Using the identity \( \cos(\pi - x) = -\cos x \), we can substitute this into our integral: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 - \cos x} \] ### Step 3: Add the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x} \) 2. \( I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 - \cos x} \) Adding these two equations: \[ 2I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \left( \frac{1}{1 + \cos x} + \frac{1}{1 - \cos x} \right) dx \] ### Step 4: Combine the fractions To combine the fractions, we find a common denominator: \[ \frac{1}{1 + \cos x} + \frac{1}{1 - \cos x} = \frac{(1 - \cos x) + (1 + \cos x)}{(1 + \cos x)(1 - \cos x)} = \frac{2}{1 - \cos^2 x} \] Using the identity \( 1 - \cos^2 x = \sin^2 x \): \[ \frac{2}{1 - \cos^2 x} = \frac{2}{\sin^2 x} \] ### Step 5: Substitute back into the integral Thus, we can rewrite our equation for \( 2I \): \[ 2I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{2}{\sin^2 x} \, dx \] This simplifies to: \[ 2I = 2 \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \csc^2 x \, dx \] ### Step 6: Integrate \( \csc^2 x \) The integral of \( \csc^2 x \) is \( -\cot x \): \[ 2I = 2 \left[ -\cot x \right]_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \] ### Step 7: Evaluate the limits Now we evaluate: \[ -\cot\left(\frac{3\pi}{4}\right) + \cot\left(\frac{\pi}{4}\right) \] We know: - \( \cot\left(\frac{3\pi}{4}\right) = -1 \) - \( \cot\left(\frac{\pi}{4}\right) = 1 \) Thus, we have: \[ 2I = 2 \left[ -(-1) + 1 \right] = 2 \left[ 1 + 1 \right] = 4 \] ### Step 8: Solve for \( I \) Dividing by 2: \[ I = 2 \] ### Final Answer Thus, the value of the integral is: \[ \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS (MHT-CET EXAM QUESTIONS))|12 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//4)^(pi//4)(dx)/(1+ cos 2x) is equal to

int_(pi//4)^(pi//2)(dx)/((1-cos2x))

int_(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

int_(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

int_(-pi//4)^(pi//4) dx/(1-sin x)=

int_(-pi//4)^(pi//4) dx/(1+sin x)=

The value of int_(pi//4)^(3pi//4) (x)/(1+sin x) dx is equal to

The value of int_(pi/4)^((3pi)/4)(cos x)/(1-cos x)dx is equal to (k-(pi)/(2)) then k=

int_(pi//4)^(3pi//4)(xsinx)/(1+sinx)dx

The value of int_(pi//4)^(3pi//4)(x)/(1+sinx) dx .. . . . .

MARVEL PUBLICATION-INTEGRATION - DEFINITE INTEGRALS -MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)
  1. The integral underset(0)overset(a)int (g(x))/(f(x)+f(a-x))dx vanishes...

    Text Solution

    |

  2. If I(n)=underset(0)overset(pi//4)inttan^(n)x dx, then (1)/(I(2)+I(4)...

    Text Solution

    |

  3. The value int(-2)^(2) (plog ((1+x)/(1-x)) + q log ((1-x)/(1+x))^(-2) +...

    Text Solution

    |

  4. lim(n to oo)((sum(r=1)^(n)r^(2))(sum(r=1)^(n)r^(3)))/((sum(r=1)^(n)r^(...

    Text Solution

    |

  5. If : int(0)^(pi)ln(sin x) dx = k, then : int(0)^(pi//4)ln (1+tan x)=

    Text Solution

    |

  6. int(pi/3)^(pi/2) sqrt(1+cosx)/(1-cosx)^(5/2) dx

    Text Solution

    |

  7. int(-pi//2)^(pi//2)(sin^(2)x.cos^(2)x(sin x+cos x))dx=

    Text Solution

    |

  8. If : int(ln 2)^(x)(1)/(sqrt(e^(t)-1))dt=(pi)/(6), then : x =

    Text Solution

    |

  9. int(0)^(pi//2)sin x.cos x. sqrt(a^(2).sin^(2)x+b^(2).cos^(2)x)dx=

    Text Solution

    |

  10. If int0^oo (x^2 \ dx)/((x^2+a^2)(x^2+b^2)(x^2+c^2)) = pi/(2(a+b)(b+c)(...

    Text Solution

    |

  11. int(0)^(2) (2x-2)/(2x-x^(2)) dx is equal to

    Text Solution

    |

  12. int(1)^(e^(99))(sin(pi.ln x))/(x)dx=

    Text Solution

    |

  13. Evaluate : lim(n-> oo) (1^4+2^4+3^4+...+n^4)/n^5 - lim(n->oo) (1^3+2^3...

    Text Solution

    |

  14. int(0) ^(pi//2) ((sin x +cos x )^(2))/sqrt(1+ sin 2x)dx =

    Text Solution

    |

  15. The value of int(8 log(1+x))/(1+x^(2)) dx is

    Text Solution

    |

  16. Find lim(ntooo)(1/(n+1)+1/(n+2)+...+1/(6n))

    Text Solution

    |

  17. (x.sin^(-1)x^(2))/(sqrt(1-x^(4)))

    Text Solution

    |

  18. overset(2pi) underset(0)int(xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx,n gt 0...

    Text Solution

    |

  19. If f(x)=Asin((pix)/2)+B, f'(1/2)=sqrt2 and int0^1 f(x)dx=(2A)/pi then ...

    Text Solution

    |

  20. int(pi//4)^(3pi//4)(dx)/(1+cos x)=

    Text Solution

    |