Home
Class 12
MATHS
int(0)^(1)sqrt(x)dx=...

`int_(0)^(1)sqrt(x)dx=`

A

0

B

`(2)/(3)`

C

`(3)/(2)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \(\int_{0}^{1} \sqrt{x} \, dx\), we will follow these steps: ### Step 1: Rewrite the integrand The integrand \(\sqrt{x}\) can be rewritten in terms of exponents: \[ \sqrt{x} = x^{1/2} \] ### Step 2: Use the power rule for integration We apply the power rule for integration, which states that: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] In our case, \(n = \frac{1}{2}\): \[ \int x^{1/2} \, dx = \frac{x^{(1/2) + 1}}{(1/2) + 1} + C = \frac{x^{3/2}}{3/2} + C = \frac{2}{3} x^{3/2} + C \] ### Step 3: Evaluate the definite integral Now we need to evaluate the definite integral from 0 to 1: \[ \int_{0}^{1} \sqrt{x} \, dx = \left[ \frac{2}{3} x^{3/2} \right]_{0}^{1} \] ### Step 4: Substitute the limits Now we substitute the upper and lower limits into the expression: \[ = \frac{2}{3} (1)^{3/2} - \frac{2}{3} (0)^{3/2} \] Calculating this gives: \[ = \frac{2}{3} \cdot 1 - \frac{2}{3} \cdot 0 = \frac{2}{3} - 0 = \frac{2}{3} \] ### Final Answer Thus, the value of the definite integral \(\int_{0}^{1} \sqrt{x} \, dx\) is: \[ \frac{2}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)x+sqrt(x)dx=

int_(0)^(1)sqrt(x+1) dx =

[-int_(0)^(1)sqrt(1-x)dx],[=(pi)/(2)-1]

int_(0)^(1)x sqrt(1-x)dx

int_(0)^(1)x sqrt(x+2)dx

int_(0)^(2)(1)/(sqrt(x))dx

int_(0)^(1)sqrt(x(1-x))dx equals

Evaluate :int_(0)^(1)sqrt(x(1-x))dx

Evaluate : int_(0)^(1)(e^(sqrt(x)))/(sqrt(x))dx

The value of int_(0)^(1) sqrt((1-x)/(1+x))dx is