Home
Class 12
MATHS
int(-pi//2)^(pi//2)(sin^(2n-1)x)/(1+cos^...

`int_(-pi//2)^(pi//2)(sin^(2n-1)x)/(1+cos^(2n)x)dx=`

A

`(pi)/(2)`

B

`-(pi)/(2)`

C

0

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^{2n-1}(x)}{1 + \cos^{2n}(x)} \, dx, \] we will first determine whether the integrand is an odd or even function. ### Step 1: Determine if the function is odd or even Let \( f(x) = \frac{\sin^{2n-1}(x)}{1 + \cos^{2n}(x)} \). To check if \( f(x) \) is odd, we need to evaluate \( f(-x) \): \[ f(-x) = \frac{\sin^{2n-1}(-x)}{1 + \cos^{2n}(-x)}. \] Using the properties of sine and cosine: - \( \sin(-x) = -\sin(x) \) (sine is an odd function) - \( \cos(-x) = \cos(x) \) (cosine is an even function) Substituting these properties into \( f(-x) \): \[ f(-x) = \frac{(-\sin(x))^{2n-1}}{1 + \cos^{2n}(x)} = \frac{-(\sin^{2n-1}(x))}{1 + \cos^{2n}(x)} = -f(x). \] Since \( f(-x) = -f(x) \), we conclude that \( f(x) \) is an odd function. ### Step 2: Evaluate the integral For odd functions, the integral over symmetric limits around zero is zero: \[ \int_{-a}^{a} f(x) \, dx = 0. \] In our case, the limits are from \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\), which are symmetric around zero. Therefore, we can conclude: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \, dx = 0. \] ### Final Result Thus, the value of the integral is: \[ \boxed{0}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • INTEGRATION - DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PART - B : Mastering The BEST)|209 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos
  • INTEGRATION - INDEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|45 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(sin^(n)x)/((sin^(n)x+cos^(n)x))dx=?

int_(-pi//2)^(pi//2) sin^(2)x cos^(2) x(sin xcos x)dx=

int_(-pi//2)^(pi//2)(sin^(2)x.cos^(2)x(sin x+cos x))dx=

Find the value of int_(pi/4)^(pi/3) (sin2x)/(1-cos2x) dx

int_(-pi)^( pi)(sin^(2)x)/(1+a^(x))dx

Evaluate int_(-pi/2)^(pi/2)(sin2x)/(1+cos^3x)dx

Prove that: int_(0)^(2 pi)(x sin^(2n)x)/(sin^(2n)+cos^(2n)x)dx=pi^(2)

Evaluate the following integrals: (1-35)pi/2int_(0)^( pi/2)(sin^(n)x)/(sin^(n)+cos^(n)x)dx