Home
Class 12
MATHS
Form differential equation for (x-a)^(2)...

Form differential equation for `(x-a)^(2)+y^(2)=a^(2)` A)`(x+yy_(1))^(2)=y^(2)` B)`(xy_(1)+y)^(2)=y^(2)` C)`y^(2)=x^(2)+2xyy_(1)` D)`x^(2)=y^(2)+2xyy_(1)`

A

`(x+yy_(1))^(2)=y^(2)`

B

`(xy_(1)+y)^(2)=y^(2)`

C

`y^(2)=x^(2)+2xyy_(1)`

D

`x^(2)=y^(2)+2xyy_(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To form the differential equation from the given equation \((x-a)^2 + y^2 = a^2\), we will follow these steps: ### Step 1: Expand the given equation Start with the equation: \[ (x-a)^2 + y^2 = a^2 \] Using the identity \((a-b)^2 = a^2 - 2ab + b^2\), we expand: \[ x^2 - 2ax + a^2 + y^2 = a^2 \] Now, simplify by canceling \(a^2\) from both sides: \[ x^2 - 2ax + y^2 = 0 \] ### Step 2: Differentiate the equation Now we differentiate the equation with respect to \(x\): \[ \frac{d}{dx}(x^2) - \frac{d}{dx}(2ax) + \frac{d}{dx}(y^2) = 0 \] This gives: \[ 2x - 2a + 2y \frac{dy}{dx} = 0 \] We can express \(\frac{dy}{dx}\) as \(y'\): \[ 2x - 2a + 2y y' = 0 \] ### Step 3: Solve for \(a\) From the differentiated equation, we can isolate \(a\): \[ 2a = 2x + 2y y' \] Thus, we have: \[ a = x + y y' \] ### Step 4: Substitute \(a\) back into the original equation Now substitute \(a\) back into the original equation: \[ x^2 + y^2 - 2a x = 0 \] Substituting \(a\): \[ x^2 + y^2 - 2(x + y y')x = 0 \] This simplifies to: \[ x^2 + y^2 - 2x^2 - 2xy y' = 0 \] Rearranging gives: \[ y^2 = x^2 + 2xy y' \] ### Final Result The final differential equation is: \[ y^2 = x^2 + 2xy y' \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

Form differential equation for x^(2)+(y-a)^(2)=a^(2) A) y^(2)=x^(2)+2xyy_(1) B) x^(2)=y^(2)+(2xy)/(y_(1)) C) (y_(1))^(2)=y^(2)+2xyy_(1) D) y^(2)y_(1)=x^(2)+2xy

Form differential equation for Ax^(2)-By^(2)=0 A) xyy_(2)+x(y_(1))^(2)-yy_(1)=0 B) y_(1)=y/x C) y_(1)=x/y D) y_(1)=xy

Form differential equation for (y-c)^(2)=cx A) y=2xy_(1)+4x(y_(1))^(2) B) y_(1)=2xy+4xy^(2) C) 2yy_(1)=2x+4x^(2) D) y_(1)=x^(2)y+x^(4)y^(2)

Form differential equation for y=cx-2c+c^(3) A) y=xy_(1)-2y_(1)+(y_(1))^(3) B) y=xy_(1) C) yy_(1)+x+y_(1) D) y_(3)-2y_(2)+xy_(1)=y

Form differential equation for y=e^(x)(a+bx+x^(2)) A) y_(2)-2y_(1)+y=2e^(x) B) y_(2)+2y_(1)-y=2e^(x) C) y_(2)-2y_(1)-y=2e^(x) D) y_(1)-2y_(2)+y=2e^(x)

Solution of the differential equation xy^(3)(dy)/(dx)=1-x^(2)+y^(2)-x^(2)y^(2) is

Solution of the differential equation (xdy)/(x^(2)+y^(2))=((y)/(x^(2)+y^(2))-1)dx , is

The solution of x^(2)y_(1)^(2)+xyy_(1)-6y^(2)=0 are

The solution of differential equation yy'=x((y^(2))/(x^(2))+(f((y^(2))/(x^(2))))/(f'((y^(2))/(x^(2))))) is