Home
Class 12
MATHS
Form differential equation for x^(2)+(y-...

Form differential equation for `x^(2)+(y-a)^(2)=a^(2)` A)`y^(2)=x^(2)+2xyy_(1)` B)`x^(2)=y^(2)+(2xy)/(y_(1))` C)`(y_(1))^(2)=y^(2)+2xyy_(1)` D)`y^(2)y_(1)=x^(2)+2xy`

A

`y^(2)=x^(2)+2xyy_(1)`

B

`x^(2)=y^(2)+(2xy)/(y_(1))`

C

`(y_(1))^(2)=y^(2)+2xyy_(1)`

D

`y^(2)y_(1)=x^(2)+2xy`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

Form differential equation for (x-a)^(2)+y^(2)=a^(2) A) (x+yy_(1))^(2)=y^(2) B) (xy_(1)+y)^(2)=y^(2) C) y^(2)=x^(2)+2xyy_(1) D) x^(2)=y^(2)+2xyy_(1)

Form differential equation for Ax^(2)-By^(2)=0 A) xyy_(2)+x(y_(1))^(2)-yy_(1)=0 B) y_(1)=y/x C) y_(1)=x/y D) y_(1)=xy

Form differential equation for (y-c)^(2)=cx A) y=2xy_(1)+4x(y_(1))^(2) B) y_(1)=2xy+4xy^(2) C) 2yy_(1)=2x+4x^(2) D) y_(1)=x^(2)y+x^(4)y^(2)

Solution of the differential equation xy^(3)(dy)/(dx)=1-x^(2)+y^(2)-x^(2)y^(2) is

Form differential equation for y=cx-2c+c^(3) A) y=xy_(1)-2y_(1)+(y_(1))^(3) B) y=xy_(1) C) yy_(1)+x+y_(1) D) y_(3)-2y_(2)+xy_(1)=y

Form differential equation for y=e^(x)(a+bx+x^(2)) A) y_(2)-2y_(1)+y=2e^(x) B) y_(2)+2y_(1)-y=2e^(x) C) y_(2)-2y_(1)-y=2e^(x) D) y_(1)-2y_(2)+y=2e^(x)

The solution of x^(2)y_(1)^(2)+xyy_(1)-6y^(2)=0 are

y=ax+(b)/(x) is a solution of the D.E. A) x^(2)y_(2)+xy_(1)+y=0 B) x^(2)y_(2)+2xy_(1)+2y=0 C) x^(2)y_(2)+xy_(1)-y=0 D) x^(2)y_(2)-xy_(1)+y=0

If y=x^(2)+x^(-2)," then "x^(2)y_(2)+4xy_(1)+2y=

y^(2)=a(b-x)(b+x) is a solution of the D.E. A) y_(2)+x(y_(1))^(2)+yy_(1)=0 B) xyy_(2)+x(y_(1))^(2)-yy_(1)=0 C) xyy_(2)-x(y_(1))^(2)+yy_(1)=0 D) yy_(1),y_(2)=x^(2)