Home
Class 12
MATHS
sin x cos y+(dy)/(dx)cos x sin y=0...

`sin x cos y+(dy)/(dx)cos x sin y=0`

A

`sin(x+y)=c`

B

`sec x sec y =c`

C

`sin x cos y=c`

D

`cos (x+y)=c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( \sin x \cos y + \frac{dy}{dx} \cos x \sin y = 0 \), we will follow these steps: ### Step 1: Rearranging the Equation We start by isolating \( \frac{dy}{dx} \): \[ \frac{dy}{dx} \cos x \sin y = -\sin x \cos y \] Now, divide both sides by \( \cos x \sin y \) (assuming \( \cos x \sin y \neq 0 \)): \[ \frac{dy}{dx} = -\frac{\sin x \cos y}{\cos x \sin y} \] ### Step 2: Separating Variables We can separate the variables \( y \) and \( x \): \[ \frac{dy}{\sin y} = -\frac{\sin x}{\cos x} dx \] This simplifies to: \[ \frac{dy}{\sin y} = -\tan x \, dx \] ### Step 3: Integrating Both Sides Now we integrate both sides: \[ \int \frac{dy}{\sin y} = -\int \tan x \, dx \] The integral of \( \frac{1}{\sin y} \) is \( \log |\csc y - \cot y| \) and the integral of \( \tan x \) is \( -\log |\cos x| \): \[ \log |\csc y - \cot y| = -\log |\cos x| + C \] ### Step 4: Simplifying the Equation We can rewrite the equation: \[ \log |\csc y - \cot y| + \log |\cos x| = C \] Using the property of logarithms, we combine the logs: \[ \log |\cos x (\csc y - \cot y)| = C \] Exponentiating both sides gives: \[ |\cos x (\csc y - \cot y)| = e^C \] Let \( k = e^C \), so we have: \[ \cos x (\csc y - \cot y) = k \] ### Step 5: Final Form We can express this in a more familiar form: \[ \cos x \left( \frac{1 - \cos y}{\sin y} \right) = k \] This can be rearranged to find a relationship between \( x \) and \( y \). ### Final Answer Thus, the solution to the differential equation is: \[ \sin x \sin y = C \] where \( C \) is a constant. ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

Solve the following differential equation: cos x cos y(dy)/(dx)=-sin x sin y

Solution of the differential equation sin x. cos y dy + cos x. sin y dx = 0 is

The solution of (dy) / (dx) + (y cos x + sin y + y) / (sin x + x cos y + x) = 0 is

cos x cos y dy - sin x sin y dx=0

x sin x (dy) / (dx) + y (x cos x + sin x) = sin x

The solution of the differential equation x sin d (dy)/(dx) + ( x cos x + sin x ) y = sinx . When y (0)=0 is

Solution of the differential equation cos x cos y dy -sin x sin y dx=0 is

cos y (dy) / (dx) + sin y cos x = sin x cos x

If y=sin x+cos x then (dy)/(dx) =

cos ^ (3) x (dy) / (dx) + y cos x = sin x