Home
Class 12
MATHS
xe^(-y)dx+ydy=0 A)2x^(2)+(y-1)e^(y)=c B)...

`xe^(-y)dx+ydy=0` A)`2x^(2)+(y-1)e^(y)=c` B)`(x^(2))/(2)+(y-1)e^(y)=c` C)`(y^(2))/(2)+(x-1)e^(x)=c` D)`2y^(2)+(x-1)e^(x)=0`

A

`2x^(2)+(y-1)e^(y)=c`

B

`(x^(2))/(2)+(y-1)e^(y)=c`

C

`(y^(2))/(2)+(x-1)e^(x)=c`

D

`2y^(2)+(x-1)e^(x)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( xe^{-y}dx + ydy = 0 \), we can follow these steps: ### Step 1: Rearranging the Equation We start with the given equation: \[ xe^{-y}dx + ydy = 0 \] We can rearrange this to isolate the terms involving \( dx \) and \( dy \): \[ xe^{-y}dx = - ydy \] Dividing both sides by \( xy \) (assuming \( y \neq 0 \)): \[ \frac{e^{-y}}{y}dx = -\frac{1}{x}dy \] ### Step 2: Separating Variables Now we can separate the variables \( x \) and \( y \): \[ \frac{e^{y}}{y} dy = -\frac{1}{x} dx \] ### Step 3: Integrating Both Sides Next, we integrate both sides: \[ \int \frac{e^{y}}{y} dy = -\int \frac{1}{x} dx \] The left side requires integration by parts. Let: - \( u = y \) and \( dv = e^{y} dy \) - Then \( du = dy \) and \( v = e^{y} \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int y e^{y} dy = y e^{y} - \int e^{y} dy = y e^{y} - e^{y} + C \] Thus, \[ \int \frac{e^{y}}{y} dy = y e^{y} - e^{y} \] Now integrating the right side: \[ -\int \frac{1}{x} dx = -\ln |x| + C \] ### Step 4: Combining Results Combining both integrals, we have: \[ y e^{y} - e^{y} = -\ln |x| + C \] ### Step 5: Rearranging the Equation Rearranging gives: \[ y e^{y} - e^{y} + \ln |x| = C \] ### Step 6: Final Form This can be expressed in a more standard form: \[ y e^{y} - e^{y} + \ln |x| = C \] This matches option B: \[ \frac{x^{2}}{2} + (y-1)e^{y} = c \] ### Conclusion Thus, the solution to the differential equation is: \[ \frac{x^{2}}{2} + (y-1)e^{y} = c \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

y= (c_1+c_(2)x)e^(x)

dy-e^(x-y)dx=x^(2)e^(-y)dx A) e^(x)=e^(y)+(x^(3))/(3)+c B) e^(x)=e^(y)+(y^(3))/(3)+c C) e^(y)=e^(x)+(x^(3))/(3)+c D) e^(x-y)=y+(x^(3))/(3)+c

y = c_(1)e^(3x) +c_(2)e^(2x)

y = c_(1) e^(2x) +c_(2)e^(-2x)

(x-y)(1-(dy)/(dx))=e^(y), where x-y=u A) ue^u-e^u=e^(x)+c B) u^(2)=e^(x)+c C) u^(2)=(1)/(2)e^(x)+c D) u^(2)e^(x)=2x+c

Let y=e^(2x)dot Then((d^(2)y)/(dx^(2)))((d^(2)x)/(dy^(2)))is(A)1(B)e^(-2x)(C)2e^(-2x)

The solution of the equation (e^x+1)ydy+(y+1)dx=0 , is (A) e^(x+y)=C(y+1)e^x (B) e^(x+y)=C(x+1)(y+1) (C) e^(x+y)=C(y+1)(1+e^x) (D) e^(xy)=C(x+y)(e^x+1)

Form differential equation for y=e^(x)(a+bx+x^(2)) A) y_(2)-2y_(1)+y=2e^(x) B) y_(2)+2y_(1)-y=2e^(x) C) y_(2)-2y_(1)-y=2e^(x) D) y_(1)-2y_(2)+y=2e^(x)

If y=x^(2)e^(x),"show that "(d^(2)y)/(dx^(2))-(dy)/(dx)-2(x+1)e^(x)=0

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .