Home
Class 12
MATHS
(dy)/(dx)=(1+x)(1+y^(2))A)(1)/(2)log[(1+...

`(dy)/(dx)=(1+x)(1+y^(2))`A)`(1)/(2)log[(1+y)/(1-y)]=x+(x^(2))/(2)+c` B)`log(1+y^(2))=x+(x^(2))/(2)+c` C)`tan^(-1)y=x+(x^(2))/(2)+c` D)`tan^(-1)x=y+(y^(2))/(2)+c`

A

`(1)/(2)log[(1+y)/(1-y)]=x+(x^(2))/(2)+c`

B

`log(1+y^(2))=x+(x^(2))/(2)+c`

C

`tan^(-1)y=x+(x^(2))/(2)+c`

D

`tan^(-1)x=y+(y^(2))/(2)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

The solution of the differential equation (dy)/(dx)=(x^(2)+xy+y^(2))/(x^(2)) is (A)tan^(-1)((x)/(y))^(2)=log y+c(B)tan^(-1)((y)/(x))=log x+c(C)tan^(-1)((x)/(y))=log x+c(D)tan^(-1)((y)/(x))=log y+c

y^(2)-(dy)/(dx)=x^(2)(dy)/(dx) A) y^(-1)+tan^(-1)x=c B) x^(-1)+tan^(-1)y=c C) y+tan^(-1)x=c D) x^(-1)+y^(-1)=tan^(-1)x+c

xe^(-y)dx+ydy=0 A) 2x^(2)+(y-1)e^(y)=c B) (x^(2))/(2)+(y-1)e^(y)=c C) (y^(2))/(2)+(x-1)e^(x)=c D) 2y^(2)+(x-1)e^(x)=0

If y=tan^(-1)x, then (1+x^(2))y_(2)+2xy_(1)= (a) y(b)0(c)1(d)2

If log sqrt(x^(2)+y^(2))=tan^(-1)((y)/(x)),then(dy)/(dx) is

(x+xy^(2))dx+(y-x^(2)y)dy=0 A) 1+x^(2)=c(1-y^(2)) B) c(1+y^(2))=(1-x^(2)) C) 1-x^(2)=c/(1+y^(2)) D) 1-y^(2)=c(1-x^(2))

If log(x^(2)+y^(2))=2tan^(-1)((y)/(x)), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^(2)+y^(2))=2tan^(-1)((y)/(x)), show that (dy)/(dx)=(x+y)/(x-y)

(dy)/(dx)=(y)/(x)-x/(y), where y=vx A) y^(2)=xlog((c)/(x)) B) y^(2)=4xlog((c)/(x)) C) y^(2)=2x^(2)log((c)/(x)) D) v^(2)=2clogv

If log (x^(2)+y^(2))=tan^(-1)((y)/(x)), then show that (dy)/(dx)=(x+y)/(x-y)