Home
Class 12
MATHS
sqrt(1-y^(2))dx-sqrt(1-x^(2))dy=0A)sin^(...

`sqrt(1-y^(2))dx-sqrt(1-x^(2))dy=0`A)`sin^(-1)x-cos^(-1)y=c` B)`sin^(-1)x-sin^(-1)y=c` C)`log(x+sqrt(1-x^(2)))=log(y+sqrt(1-y^(2)))+c` D)`x-y=c(1+xy)`

A

`sin^(-1)x-cos^(-1)y=c`

B

`sin^(-1)x-sin^(-1)y=c`

C

`log(x+sqrt(1-x^(2)))=log(y+sqrt(1-y^(2)))+c`

D

`x-y=c(1+xy)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)x+sin^(-1)y=cos^(-1)(sqrt(1-x^(2))sqrt(1-y^(2))-xy) if x in[0,1],y in[0,1]

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-x^2) + y sqrt(1-y^2) =1 .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, prove that: x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

if,sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

(dy)/(dx) if y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)),x is 0 to 1

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))

The solution of (dy)/(dx)+sqrt((1-y^(2))/(1-x^(2)))=0 is (A) tan^(-1)x+cot^(1)-x=c(B)sin^(-1)x+sin^(-1)y+c(C)sec^(-1)x+cos ec^(-1)x=c(D) none of these

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

If y=log[x+sqrt((1+x^(2)))], prove that sqrt((1+x^(2)))(dy)/(dx)=1