Home
Class 12
MATHS
sec x dy +cosec y dx=0...

`sec x dy +cosec y dx=0`

A

`cos x-sin xy=c`

B

`cos x+siny=c`

C

`sinx-cos y=c`

D

`sin(x-y)=c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( \sec x \, dy + \csc y \, dx = 0 \), we can follow these steps: ### Step 1: Rearranging the equation We start with the given equation: \[ \sec x \, dy + \csc y \, dx = 0 \] We can rearrange this to isolate \( dy \) and \( dx \): \[ \sec x \, dy = -\csc y \, dx \] Dividing both sides by \( \sec x \) and \( \csc y \): \[ \frac{dy}{\csc y} = -\frac{dx}{\sec x} \] ### Step 2: Simplifying the fractions Recall that \( \csc y = \frac{1}{\sin y} \) and \( \sec x = \frac{1}{\cos x} \). Thus, we can rewrite the equation: \[ \sin y \, dy = -\cos x \, dx \] ### Step 3: Integrating both sides Now we integrate both sides: \[ \int \sin y \, dy = -\int \cos x \, dx \] The left side integrates to: \[ -\cos y \] And the right side integrates to: \[ -\sin x + C \] Thus, we have: \[ -\cos y = -\sin x + C \] ### Step 4: Rearranging the equation Rearranging gives us: \[ \sin x - \cos y = C \] ### Final Solution The final solution to the differential equation is: \[ \sin x - \cos y = C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

sec xdy + cosec y dx =0

tanx sec y dx+dy=0

If 0 lt x lt pi/2 and sec x = cosec y , then the value of sin (x + y) is

int_(0)^(pi//2)(f(sec x))/(f(sec x)+f(cosec x))dx=

(d)/(dx)(log tan((pi)/(4)+(x)/(2)))= (a) cosec x (b) -cosec x (c) sec x (d) -sec x

∫ Sec^2x * Cosec^2x dx

The solution of differential equation x sec((y)/(x))(y dx + x dy)="y cosec"((y)/(x))(x dy - y dx) is

If y = sec^(-1) [ "cosec x"] + "cosec"^(-1) [sec x] + sin^(-1) [cos x] + cos^(-1)[sinx ], "then "(dy)/(dx) is equal to

sec^(2)x tany dx + sec^(2)y tan x dy = dy =0

IFof 1+ (x tan y-sec y) (dy) / (dx) = 0