Home
Class 12
MATHS
(x^(2)-x^(2)y)(dy)/(dx)+y^(2)+x^(2)y^(2)...

`(x^(2)-x^(2)y)(dy)/(dx)+y^(2)+x^(2)y^(2)=0`

A

`x-(x^(-1)+y^(-1))-logy=c`

B

`x+(x^(-1)-y^(-1))=log(cy)`

C

`x^(2)+xy+log((y)/(x))=c`

D

`(x^(-1)-y^(-1))+logy=x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \((x^{2} - x^{2}y) \frac{dy}{dx} + y^{2} + x^{2}y^{2} = 0\), we will follow these steps: ### Step 1: Rearranging the Equation Start by rearranging the equation to isolate \(\frac{dy}{dx}\): \[ (x^{2} - x^{2}y) \frac{dy}{dx} = - (y^{2} + x^{2}y^{2}) \] This can be simplified to: \[ \frac{dy}{dx} = -\frac{y^{2} + x^{2}y^{2}}{x^{2} - x^{2}y} \] ### Step 2: Factoring Out Common Terms Factor out common terms in the numerator and denominator: \[ \frac{dy}{dx} = -\frac{y^{2}(1 + x^{2})}{x^{2}(1 - y)} \] ### Step 3: Separating Variables Separate the variables \(y\) and \(x\): \[ \frac{1 - y}{y^{2}} dy = -\frac{1 + x^{2}}{x^{2}} dx \] ### Step 4: Simplifying the Left Side Rewrite the left side: \[ \left(\frac{1}{y^{2}} - \frac{1}{y}\right) dy = -\left(\frac{1}{x^{2}} + 1\right) dx \] ### Step 5: Integrating Both Sides Now, integrate both sides: \[ \int \left(\frac{1}{y^{2}} - \frac{1}{y}\right) dy = \int \left(-\frac{1}{x^{2}} - 1\right) dx \] ### Step 6: Performing the Integrals The integrals are computed as follows: - Left side: \[ \int \frac{1}{y^{2}} dy = -\frac{1}{y}, \quad \int -\frac{1}{y} dy = -\ln|y| \] Thus, the left side becomes: \[ -\frac{1}{y} + \ln|y| \] - Right side: \[ \int -\frac{1}{x^{2}} dx = \frac{1}{x}, \quad \int -1 dx = -x \] Thus, the right side becomes: \[ -\frac{1}{x} - x \] ### Step 7: Combining the Results Combine the results of the integrals: \[ -\frac{1}{y} + \ln|y| = -\frac{1}{x} - x + C \] ### Step 8: Rearranging the Equation Rearranging gives us: \[ \ln|y| - \frac{1}{y} + \frac{1}{x} + x = C \] ### Final Result Thus, the solution to the differential equation is: \[ \ln|y| - \frac{1}{y} + \frac{1}{x} + x = C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

Solve: (x^(2)-yx^(2))dy+(y^(2)+x^(2)y^(2))dx=0

x(dy)/(dx)+(y^(2))/(x)=y

if y=x^(x), then prove (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0

If y=x^(x), prove that (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0

x^(2)dy+y^(2)dx+x^(2)y^(2)dx=0

For each of the following differential equations verify that the accompanying functions a solution.Differential Function x(dy)/(dx)=yy=axx+y(dy)/(dx)=0y=+-sqrt(a^(2)-x^(2))x(dy)/(dx)y=y^(2)y=(a)/(x+a)x^(3)(d^(2)y)/(dx^(2))=1y=ax+b+(1)/(2x)y=((dy)/(dx))^(2)y=(1)/(4)(x+-a)^(2)

x(d^(2)y)/(dx^(2))+(dy)/(dx)+x=0

If y=log{x+sqrt(x^(2)+a^(2))}, prove that: (x^(2)+a^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=log[x+sqrt(x^(2)+a^(2))], show that ((x^(2)+a^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0