Home
Class 12
MATHS
x+y(dy)/(dx)=x^(2)+y^(2), where x^(2)+y^...

`x+y(dy)/(dx)=x^(2)+y^(2),` where `x^(2)+y^(2)=u` A)`x^(2)+y^(2)=e^(x)+c` B)`x^(2)+y^(2)=logx+c` C)`x^(2)+y^(2)=ce^(2x)` D)`tan^(-1)((x)/(y))=ce^(2x)`

A

`x^(2)+y^(2)=e^(x)+c`

B

`x^(2)+y^(2)=logx+c`

C

`x^(2)+y^(2)=ce^(2x)`

D

`tan^(-1)((x)/(y))=ce^(2x)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

x+y(dy)/(dx)=sec(x^(2)+y^(2)), where x^(2)+y^(2)=u

(x-y)(1-(dy)/(dx))=e^(y), where x-y=u A) ue^u-e^u=e^(x)+c B) u^(2)=e^(x)+c C) u^(2)=(1)/(2)e^(x)+c D) u^(2)e^(x)=2x+c

(dy)/(dx)=(y)/(x)-x/(y), where y=vx A) y^(2)=xlog((c)/(x)) B) y^(2)=4xlog((c)/(x)) C) y^(2)=2x^(2)log((c)/(x)) D) v^(2)=2clogv

If x ^(2)y^(2) =tan ^(-1) sqrt(x^(2) +y^(2) )+cot ^(-1) sqrt(x^(2) +y^(2)),then (dy)/(dx)=

xe^(-y)dx+ydy=0 A) 2x^(2)+(y-1)e^(y)=c B) (x^(2))/(2)+(y-1)e^(y)=c C) (y^(2))/(2)+(x-1)e^(x)=c D) 2y^(2)+(x-1)e^(x)=0

(dy)/(dx)=3x-2y+5, where 3x-2y+5=u A) 6x-4y+10=ce^(2x) B) -6x+4y-7=c.e^(-2x) C) logu=2x+c D) logu=2u+c

if sin^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=c prove that (dy)/(dx)=(y)/(x)

(dy)/(dx)=(1+x)(1+y^(2)) A) (1)/(2)log[(1+y)/(1-y)]=x+(x^(2))/(2)+c B) log(1+y^(2))=x+(x^(2))/(2)+c C) tan^(-1)y=x+(x^(2))/(2)+c D) tan^(-1)x=y+(y^(2))/(2)+c

y^(2)-(dy)/(dx)=x^(2)(dy)/(dx) A) y^(-1)+tan^(-1)x=c B) x^(-1)+tan^(-1)y=c C) y+tan^(-1)x=c D) x^(-1)+y^(-1)=tan^(-1)x+c