Home
Class 12
MATHS
(dy)/(dx)=sin(x+y)+cos(x+y), where x+y=u...

`(dy)/(dx)=sin(x+y)+cos(x+y),` where `x+y=u`

A

`1+tanu=e^(x)+c`

B

`1+tan((u)/(2))=e^(x)+c`

C

`1+tan((u)/(2))=ce^(x)`

D

`tan(x+y)=ce^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \(\frac{dy}{dx} = \sin(x+y) + \cos(x+y)\) where \(x+y = u\), we will follow these steps: ### Step 1: Substitute \(u = x + y\) We start by substituting \(u = x + y\). This gives us: \[ y = u - x \] Now, differentiate both sides with respect to \(x\): \[ \frac{dy}{dx} = \frac{du}{dx} - 1 \] ### Step 2: Rewrite the differential equation Substituting \(\frac{dy}{dx}\) into the original equation, we have: \[ \frac{du}{dx} - 1 = \sin(u) + \cos(u) \] Rearranging this gives: \[ \frac{du}{dx} = \sin(u) + \cos(u) + 1 \] ### Step 3: Separate variables We can separate the variables: \[ \frac{du}{\sin(u) + \cos(u) + 1} = dx \] ### Step 4: Integrate both sides Now we integrate both sides. The left side requires integrating with respect to \(u\) and the right side with respect to \(x\): \[ \int \frac{du}{\sin(u) + \cos(u) + 1} = \int dx \] ### Step 5: Simplify the left side To simplify the left side, we can use the identity: \[ \sin(u) + \cos(u) = \sqrt{2} \sin\left(u + \frac{\pi}{4}\right) \] However, for integration, we can directly integrate: \[ \int \frac{du}{\sin(u) + \cos(u) + 1} \] This integral can be solved using trigonometric identities or numerical methods, but for simplicity, we will denote the result as \(F(u)\). ### Step 6: Solve the integral After integrating, we have: \[ F(u) = x + C \] where \(C\) is the constant of integration. ### Step 7: Substitute back for \(u\) Recall that \(u = x + y\), so we substitute back: \[ F(x + y) = x + C \] ### Step 8: Final expression The final expression will depend on the form of \(F(u)\) obtained from the integration.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

(x(dy)/(dx)+y)sin(xy)=cosx, where xy=u

1+(dy)/(dx)=cos(x+y), where x+y=u

1+(dy)/(dx)=cos(x+y), where x+y=u

Solve: (dy) / (dx) = sin (x + y) + cos (x + y)

If (dy)/(dx)=(x-y+2)/(x-y+1), where u=x-y , then

1-(dy)/(dx)=sec(x-y)," where "x-y=u

(x+y)(dx-dy)=dx+dy , where x+y=u

(dy) / (dx) = (sin x-sin y) (cos x) / (cos y)

Solve (dy)/(dx)=cos(x+y)-sin(x+y) .

x+y(dy)/(dx)=sec(x^(2)+y^(2)), where x^(2)+y^(2)=u