Home
Class 12
MATHS
(x+y)(dx-dy)=dx+dy, where x+y=u...

`(x+y)(dx-dy)=dx+dy`, where `x+y=u`

A

`x+y=log(x-y)+c`

B

`x+y=log(x+y)+c`

C

`x-y=logu+c`

D

`u=logu+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \((x+y)(dx-dy)=dx+dy\) with the substitution \(x+y=u\), we can follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ (x+y)(dx-dy) = dx + dy \] Substituting \(u = x + y\), we can express \(dx\) and \(dy\) in terms of \(u\). ### Step 2: Substitute \(u\) Using the substitution \(u = x + y\), we can rewrite \(dx\) as: \[ dx = du - dy \] Now, substitute \(u\) into the equation: \[ u(dx - dy) = dx + dy \] ### Step 3: Expand and rearrange Expanding the left side gives: \[ udx - u dy = dx + dy \] Now, rearranging the equation, we have: \[ udx - dx = dy + u dy \] Factoring out \(dx\) and \(dy\): \[ (ud - 1)dx = (1 + u)dy \] ### Step 4: Separate variables Now, we can separate the variables: \[ \frac{dx}{1 + u} = \frac{dy}{u - 1} \] ### Step 5: Integrate both sides Integrate both sides: \[ \int \frac{dx}{1 + u} = \int \frac{dy}{u - 1} \] The left side integrates to: \[ \ln |1 + u| + C_1 \] And the right side integrates to: \[ \ln |u - 1| + C_2 \] ### Step 6: Combine the results Setting the two integrals equal gives: \[ \ln |1 + u| = \ln |u - 1| + C \] Where \(C = C_2 - C_1\). ### Step 7: Exponentiate to eliminate the logarithm Exponentiating both sides results in: \[ |1 + u| = K|u - 1| \] Where \(K = e^C\). ### Step 8: Substitute back for \(u\) Substituting back \(u = x + y\): \[ |1 + (x + y)| = K|(x + y) - 1| \] ### Final Result Thus, the solution to the differential equation is: \[ |1 + x + y| = K|(x + y) - 1| \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

1+(dy)/(dx)=cos(x+y), where x+y=u

1+(dy)/(dx)=cos(x+y), where x+y=u

x(dy)/(dx)=y

(x(dy)/(dx)+y)sin(xy)=cosx, where xy=u

(x-y+1)(dy)/(dx)=x-y+2 , where x-y=u

1-(dy)/(dx)=sec(x-y)," where "x-y=u

cos^(2)(x-2y)=1-2(dy)/(dx), where x-2y=u

Solve (x-y)(dx+dy)=dx-dy , given that y=-1 , where x=0 .

sec^(2)(x-2y)(1-2(dy)/(dx))=1, where x-2y=u

(dy)/(dx)=sin(x+y)+cos(x+y), where x+y=u