Home
Class 12
MATHS
x(logx-logy)dy-ydx=0, where logx-logy=u ...

`x(logx-logy)dy-ydx=0,` where `logx-logy=u` A)`cx=log(x/y)` B)`log.(x)/(y)=log(log.(x)/(y))-(x)/(y)=x+c` C)`e^((x)/(y))+e^((x)/(y)-1)=e^(x)+c` D)`u=c(logu-1)`

A

`cx=log(x/y)`

B

`log.(x)/(y)=log(log.(x)/(y))-(x)/(y)=x+c`

C

`e^((x)/(y))+e^((x)/(y)-1)=e^(x)+c`

D

`u=c(logu-1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

If e^(x-y) =log ((x)/(y)),then (dy)/(dx) =

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y), thena ^(x)b^(y)c^(z) is

If y=x^((logx)^(log(logx))) , then (dy)/(dx) is

If log x+log y=log(x+y), then a.x=ybxy=1 c.y=(x-1)/(x) d.y=(x)/(x-1)

If log ((x+y)/(3))=(1)/(2)(logx+logy)," then "(dy)/(dx)=

If (log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) the value of a^(y+z)*b^(z+x)*c^(x+y) is

The curve x = log y+ e and y = log (1/x)

If y=log _(e^(x) ) (log x ),then (dy)/(dx)

(x-y)(1-(dy)/(dx))=e^(y), where x-y=u A) ue^u-e^u=e^(x)+c B) u^(2)=e^(x)+c C) u^(2)=(1)/(2)e^(x)+c D) u^(2)e^(x)=2x+c