Home
Class 12
MATHS
xdx+secxdy=0, y=0" if " x=(pi)/(2) A)x+...

`xdx+secxdy=0, y=0" if " x=(pi)/(2)` A)`x+y cos y+cos y=(pi)/(2)` B)`y+x sin x-cosx=(pi)/(2)` C)`y+x sin x+cos x=(pi)/(2)` D)`x+y sin y+cos y=(pi)/(2)`

A

`x+y cos y+cos y=(pi)/(2)`

B

`y+x sin x-cosx=(pi)/(2)`

C

`y+x sin x+cos x=(pi)/(2)`

D

`x+y sin y+cos y=(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( xdx + \sec(x) dy = 0 \) with the initial conditions \( y = 0 \) and \( x = \frac{\pi}{2} \), we will follow these steps: ### Step 1: Rearrange the Differential Equation We start with the given equation: \[ xdx + \sec(x) dy = 0 \] Rearranging gives us: \[ \sec(x) dy = -xdx \] Dividing both sides by \(\sec(x)\): \[ dy = -x \cos(x) dx \] ### Step 2: Integrate Both Sides Now we will integrate both sides: \[ \int dy = \int -x \cos(x) dx \] The left side integrates to: \[ y \] For the right side, we will use integration by parts where: - Let \( u = x \) and \( dv = \cos(x) dx \) - Then, \( du = dx \) and \( v = \sin(x) \) Using integration by parts: \[ \int x \cos(x) dx = x \sin(x) - \int \sin(x) dx \] The integral of \(\sin(x)\) is \(-\cos(x)\), so: \[ \int x \cos(x) dx = x \sin(x) + \cos(x) \] Thus, we have: \[ y = - (x \sin(x) + \cos(x)) + C \] ### Step 3: Solve for the Constant \(C\) Now we apply the initial conditions \( y = 0 \) when \( x = \frac{\pi}{2} \): \[ 0 = -\left(\frac{\pi}{2} \sin\left(\frac{\pi}{2}\right) + \cos\left(\frac{\pi}{2}\right)\right) + C \] Calculating the values: - \(\sin\left(\frac{\pi}{2}\right) = 1\) - \(\cos\left(\frac{\pi}{2}\right) = 0\) Substituting these values: \[ 0 = -\left(\frac{\pi}{2} \cdot 1 + 0\right) + C \] This simplifies to: \[ C = \frac{\pi}{2} \] ### Step 4: Write the Final Solution Substituting \(C\) back into the equation for \(y\): \[ y = - (x \sin(x) + \cos(x)) + \frac{\pi}{2} \] Rearranging gives: \[ y + x \sin(x) + \cos(x) = \frac{\pi}{2} \] ### Conclusion The final form of the solution is: \[ y + x \sin(x) + \cos(x) = \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

y(dy)/(dx)sin x=cos x(sin x-(y^(2))/(2)); where at x=(pi)/(2)

If sin x+cos x=sqrt(y+(1)/(y)) for x in[0,pi] then x=(pi)/(4) (b) y=0y=1 (d) x=(3 pi)/(4)

Prove the following cos ((pi) / (4) -x) cos ((pi) / (4) -y) -sin ((pi) / (4) -x) sin ((pi) / (4) - y) = sin (x + y)

If x=sin((pi)/(3)+A)*cos((pi)/(3)+B) and y=cos((pi)/(3)+A)*sin ((pi)/(3)+B) then x-y=

If sin^(-1) x + sin^(-1) y = (pi)/(2) and sin 2x = cos 2y , then

Solution of 2y sin x(dy)/(dx)=sin2x-y^(2)cos x,x=(pi)/(2),y=1 is given by

Prove that (i) cos (n + 2) x cos (n+1) x +sin (n+2) x sin (n+1) x = cos x) (ii) " cos " .((pi)/(4)-x) " cos " .((pi)/(4)-y) " - sin " ((pi)/(4)-x ) " sin " ((pi)/(4) -y) =" sin " (x+y)

Given 2sin x+3cos y=3,3sin y+2cos x=4;(x,y in(0,(pi)/(2))) then

If sin^(4)x+cos^(4)y+2=4sin x*cos y and 0<=x,y<=(pi)/(2) then sin x+cos y is equal to