Home
Class 12
MATHS
D.E., having the solution y=c(1)+c(2)e^(...

D.E., having the solution `y=c_(1)+c_(2)e^(3x)`, is A)`y_(2)=3y` B)`y_(2)=3y_(1)` C)`y_(3)+3y_(1)=0` D)`y_(2)+3y=0`

A

`y_(2)=3y`

B

`y_(2)=3y_(1)`

C

`y_(3)+3y_(1)=0`

D

`y_(2)+3y=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential equation corresponding to the given solution \( y = c_1 + c_2 e^{3x} \), we will follow these steps: ### Step 1: Differentiate the given function once Given: \[ y = c_1 + c_2 e^{3x} \] Differentiating with respect to \( x \): \[ y' = \frac{dy}{dx} = 0 + c_2 \cdot \frac{d}{dx}(e^{3x}) = c_2 \cdot 3e^{3x} = 3c_2 e^{3x} \] ### Step 2: Differentiate the first derivative to find the second derivative Now, we differentiate \( y' \): \[ y'' = \frac{d^2y}{dx^2} = \frac{d}{dx}(3c_2 e^{3x}) = 3c_2 \cdot \frac{d}{dx}(e^{3x}) = 3c_2 \cdot 3e^{3x} = 9c_2 e^{3x} \] ### Step 3: Relate \( y'' \) to \( y' \) From our expressions, we have: \[ y' = 3c_2 e^{3x} \] \[ y'' = 9c_2 e^{3x} \] Now, we can express \( y'' \) in terms of \( y' \): \[ y'' = 3y' \] ### Step 4: Relate \( y'' \) to \( y \) We also have: \[ y = c_1 + c_2 e^{3x} \] From this, we can express \( c_2 e^{3x} \) as: \[ c_2 e^{3x} = y - c_1 \] Substituting this into the equation for \( y'' \): \[ y'' = 9(c_2 e^{3x}) = 9(y - c_1) \] However, since \( c_1 \) is a constant, we can express the relationship in terms of \( y \) and \( y' \): \[ y'' - 3y' = 0 \] ### Conclusion The differential equation derived from the given solution \( y = c_1 + c_2 e^{3x} \) is: \[ y'' - 3y' = 0 \] This corresponds to option B: \( y_2 = 3y_1 \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

D.E whose solution is y=e^(3x)(c_(1)cos x+c_(2)sin x)

The solution of e^(2x-3y)dx+e^(2y-3x)dy=0 is

y=ax^(2)+bx+c is the general solution of the D.E. A) y_(1)=0 B) y_(2)=0 C) y_(3)=x D) y_(3)=0

If y=3e^(2x)+2e^(3x), show that y_(2)-5y_(1)+6y=0

Form differential equation for y=cx-2c+c^(3) A) y=xy_(1)-2y_(1)+(y_(1))^(3) B) y=xy_(1) C) yy_(1)+x+y_(1) D) y_(3)-2y_(2)+xy_(1)=y

If the circle x^(2)+y^(2)=a^(2) intersects the hyperbola xy=c^(2) in four points P(x_(1),y_(1))Q(x_(2),y_(2)),R(x_(3),y_(3)),S(x_(4),y_(4)), then which of the following need not hold. (a) x_(1)+x_(2)+x_(3)+x_(4)=0 (b) x_(1)x_(2)x_(3)x_(4)=y_(1)y_(2)y_(3)y_(4)=c^(4) (c) y_(1)+y_(2)+y_(3)+y_(4)=0 (d) x_(1)+y_(2)+x_(3)+y_(4)=0

If the circle x^(2)+y^(2)=a^(2) intersects the hyperbola xy=c^(2) in four points P(x_(1),y_(1))Q(x_(2),y_(2)),R(x_(3),y_(3)),S(x_(4),y_(4)), then which of the following need not hold. (a) x_(1)+x_(2)+x_(3)+x_(4)=0 (b) x_(1)x_(2)x_(3)x_(4)=y_(1)y_(2)y_(3)y_(4)=c^(4) (c) y_(1)+y_(2)+y_(3)+y_(4)=0 (d) x_(1)+y_(2)+x_(3)+y_(4)=0

If the circle x^(2)+y^(2)=a^(2) intersects the hyperbola xy=c^(2) in four points P(x_(1),y_(1))Q(x_(2),y_(2)),R(x_(3),y_(3)),S(x_(4),y_(4)), then which of the following need not hold. (a) x_(1)+x_(2)+x_(3)+x_(4)=0 (b) x_(1)x_(2)x_(3)x_(4)=y_(1)y_(2)y_(3)y_(4)=c^(4) (c) y_(1)+y_(2)+y_(3)+y_(4)=0 (d) x_(1)+y_(2)+x_(3)+y_(4)=0

If the normals at (x_(i),y_(i)) i=1,2,3,4 to the rectangular hyperbola xy=2 meet at the point (3,4) then (A) x_(1)+x_(2)+x_(3)+x_(4)=3 (B) y_(1)+y_(2)+y_(3)+y_(4)=4 (C) y_(1)y_(2)y_(3)y_(4)=4 (D) x_(1)x_(2)x_(3)x_(4)=-4

If y=(ax+b)/(x^(2)+c), prove that (2xy_(1)+y)y_(3)=3(xy_(2)+y_(1))y_(2)