Home
Class 12
MATHS
y=a cos x+b sin x+x sin x is a solution ...

`y=a cos x+b sin x+x sin x` is a solution of the D.E. A)`y_(2)+y=x cos x` B)`y_(2)+2y=2cos x` C)`y_(2)+y=2cos x` D)`y_(2)-y=2cos x`

A

`y_(2)+y=x cos x`

B

`y_(2)+2y=2cos x`

C

`y_(2)+y=2cos x`

D

`y_(2)-y=2cos x`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

If x + y = z then cos ^ (2) x + cos ^ (2) y + cos ^ (2) z-2cos x cos y cos z =

cos x + cos y + cos z = 0 and sin x + sin y + sin, then cos ^ (2) ((xy) / (2)) =

prove that: cos ^ (2) x + cos ^ (2) y-2cos x * cos y * cos (x + y) = sin ^ (2) (x + y)

If cos x + cos y =2, then value of sin x + sin y is

Solution of differential equation (2x cos y + y ^ (2) cos x) dx (2y sin xx ^ (2) sin y) dx = 0 is (a) x ^ (2) cos y + y ^ (2) sin x = C (b) x cos yy sin x = C (c) x ^ (2) cos ^ (2) y + y ^ (2) sin ^ (2) x = C (d) x cos y + y sin x = C

Show that y=A sin x+B cos x+x sin x is a solution of differential equation y+(d^(2)y)/(dx^(2))=2cos x, where A,B are constants.

What is the value of {sin (x+y) -2 sin x+ sin(x-y)} /[cos (x-y) +cos (x+ y)-2 cos x] xx [(sin 10x- sin 8x)/ (cos-10x + cos 8x)] ? {[sin (x+y] -2 sin x+ sin(x-y)}//[cos (x-y) +cos (x+ y)-2 cos x]} xx [(sin 10x-sin 8x)//(cos10x + cos 8x)] का मान क्या है?

Solution of differential equation (2x cos y+y^(2)cos x)dx+(2y sin x-x^(2)sin y)dy=0 is

Solution of the differential equation 2y sin x(dy)/(dx)=2sinx cosx-y^(2)cos x satisfying y((pi)/(2))=1 is given by (A) y=sin^(2)x (B) y^(2)=sin x (c) y^(2)=cos x+1 (D) y^(2)sin x=4cos^(2)x

(cos x + cosy)/(cos y -cos x) = cot ((x+y)/(2)) cot ((x-y)/(2))