Home
Class 12
MATHS
If (dy)/(dx)=(x-y+2)/(x-y+1), where u=x-...

If `(dy)/(dx)=(x-y+2)/(x-y+1),` where `u=x-y`, then

A

`(x-y)/(2)+2x-y=c`

B

`x-y+((2x-y)^(2))/(2)=c`

C

`((x-y)^(2))/(2)+2x-y=c`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \(\frac{dy}{dx} = \frac{x - y + 2}{x - y + 1}\) using the substitution \(u = x - y\), we will follow these steps: ### Step 1: Substitute \(u = x - y\) We start by substituting \(u = x - y\). This implies that \(y = x - u\). ### Step 2: Differentiate \(u\) with respect to \(x\) Differentiating \(u\) with respect to \(x\), we have: \[ \frac{du}{dx} = 1 - \frac{dy}{dx} \] From this, we can express \(\frac{dy}{dx}\) as: \[ \frac{dy}{dx} = 1 - \frac{du}{dx} \] ### Step 3: Substitute \(\frac{dy}{dx}\) into the original equation Now, we substitute \(\frac{dy}{dx}\) into the original differential equation: \[ 1 - \frac{du}{dx} = \frac{u + 2}{u + 1} \] ### Step 4: Rearranging the equation Rearranging gives us: \[ -\frac{du}{dx} = \frac{u + 2}{u + 1} - 1 \] This simplifies to: \[ -\frac{du}{dx} = \frac{u + 2 - (u + 1)}{u + 1} = \frac{1}{u + 1} \] Thus, we have: \[ \frac{du}{dx} = -\frac{1}{u + 1} \] ### Step 5: Separate variables We can separate variables: \[ (u + 1) du = -dx \] ### Step 6: Integrate both sides Integrating both sides, we get: \[ \int (u + 1) du = -\int dx \] This results in: \[ \frac{u^2}{2} + u = -x + C \] ### Step 7: Substitute back for \(u\) Substituting back \(u = x - y\): \[ \frac{(x - y)^2}{2} + (x - y) = -x + C \] ### Step 8: Rearranging the equation Rearranging gives us: \[ \frac{(x - y)^2}{2} + 2x - y = C \] ### Final Answer Thus, the solution to the differential equation is: \[ \frac{(x - y)^2}{2} + 2x - y = C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

If (dy)/(dx)=(y-x+2)/(y-x+1), then

x(dy)/(dx)+(y^(2))/(x)=y

(dy)/(dx)=sin(x+y)+cos(x+y), where x+y=u

(dy)/(dx)=(x+y+1)/(2x+2y+3)

(x-y+1)(dy)/(dx)=x-y+2 , where x-y=u

1-(dy)/(dx)=sec(x-y)," where "x-y=u

(x(dy)/(dx)+y)sin(xy)=cosx, where xy=u

(x+y)(dx-dy)=dx+dy , where x+y=u

1+(dy)/(dx)=cos(x+y), where x+y=u

1+(dy)/(dx)=cos(x+y), where x+y=u