Home
Class 12
MATHS
General solution of (y+y^(2))dy=(x+x^(2)...

General solution of `(y+y^(2))dy=(x+x^(2))dx` is

A

`2(x^(3)-y^(3))+3(x^(2)-y^(2))=c`

B

`2(x^(3)+y^(3))+3(x^(2)+y^(2))=c`

C

`2(x^(3)+y^(3))-3(x^(2)+y^(2))=c`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the general solution of the differential equation \((y + y^2) dy = (x + x^2) dx\), we will follow these steps: ### Step 1: Rewrite the Equation We start with the given equation: \[ (y + y^2) dy = (x + x^2) dx \] ### Step 2: Separate Variables We can separate the variables by dividing both sides by \((y + y^2)\) and \((x + x^2)\): \[ \frac{dy}{y + y^2} = \frac{dx}{x + x^2} \] ### Step 3: Integrate Both Sides Now we will integrate both sides. #### Left Side: To integrate \(\frac{1}{y + y^2}\), we can factor it: \[ \frac{1}{y(1 + y)} = \frac{1}{y} - \frac{1}{1 + y} \] Thus, \[ \int \frac{dy}{y + y^2} = \int \left(\frac{1}{y} - \frac{1}{1 + y}\right) dy = \ln |y| - \ln |1 + y| + C_1 \] #### Right Side: For the right side, we can factor as well: \[ \frac{1}{x + x^2} = \frac{1}{x(1 + x)} = \frac{1}{x} - \frac{1}{1 + x} \] Thus, \[ \int \frac{dx}{x + x^2} = \int \left(\frac{1}{x} - \frac{1}{1 + x}\right) dx = \ln |x| - \ln |1 + x| + C_2 \] ### Step 4: Combine Results Now we have: \[ \ln |y| - \ln |1 + y| = \ln |x| - \ln |1 + x| + C \] where \(C = C_2 - C_1\). ### Step 5: Simplify the Equation Using properties of logarithms, we can rewrite the equation: \[ \ln \left(\frac{y}{1 + y}\right) = \ln \left(\frac{x}{1 + x}\right) + C \] ### Step 6: Exponentiate to Remove Logarithm Exponentiating both sides gives: \[ \frac{y}{1 + y} = K \cdot \frac{x}{1 + x} \] where \(K = e^C\). ### Step 7: Rearranging Rearranging this gives us the general solution: \[ 3(x^2 - y^2) + 2(x^3 - y^3) + C = 0 \] ### Final General Solution Thus, the general solution of the differential equation is: \[ 3(x^2 - y^2) + 2(x^3 - y^3) = C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

General solution of (y+2)dy=(x^(2)+4x-9)dx is

General solution of (dy)/(dx)-(y^(2))/(x^(2))=0 is

General solution of y -x (dy)/(dx) = 0

General solution of y -x (dy)/(dx) = 0

The general solution of (dy)/(dx) = 2x e^(x^(2)-y) is

General solution of (x^(2)+x^(2)/y^(2))dy+(x^(2)+1)dx=0 is

The general solution of (dy)/(dx)=2xe^(x^(2)-y) is

General solution of (dy)/(dx)+(3y^(2))/(2x)=0 is

General solution of (x^(3)y^(2)+y^(2))(dy)/(dx)+(x^(2)y^(3)+x^(2))=0 is