Home
Class 12
MATHS
sqrt(1-x^(2))dy+ydx=0...

`sqrt(1-x^(2))dy+ydx=0`

A

`y(x+sqrt(1-x^(2)))=c`

B

`logy+sin^(-1)x=c`

C

`ysin^(-1)x=c`

D

`y^(2)=2sin^(-1)x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( \sqrt{1 - x^2} \, dy + y \, dx = 0 \), we can follow these steps: ### Step 1: Rearranging the Equation We start by rearranging the given equation: \[ \sqrt{1 - x^2} \, dy = -y \, dx \] Now, we can separate the variables \( y \) and \( x \): \[ \frac{dy}{y} = -\frac{dx}{\sqrt{1 - x^2}} \] ### Step 2: Integrating Both Sides Next, we integrate both sides. The left side integrates to: \[ \int \frac{dy}{y} = \ln |y| + C_1 \] The right side requires the integral of \( -\frac{1}{\sqrt{1 - x^2}} \): \[ \int -\frac{dx}{\sqrt{1 - x^2}} = -\sin^{-1}(x) + C_2 \] Combining the constants of integration, we can write: \[ \ln |y| = -\sin^{-1}(x) + C \] ### Step 3: Exponentiating Both Sides To eliminate the logarithm, we exponentiate both sides: \[ |y| = e^{-\sin^{-1}(x) + C} = e^C e^{-\sin^{-1}(x)} \] Let \( K = e^C \) (where \( K > 0 \)), we have: \[ |y| = K e^{-\sin^{-1}(x)} \] Thus, we can write: \[ y = K e^{-\sin^{-1}(x)} \] or \[ y = \pm K e^{-\sin^{-1}(x)} \] ### Step 4: Final Form We can express the solution in a more general form: \[ y = C e^{-\sin^{-1}(x)} \] where \( C \) can be any real number (positive or negative). ### Summary of the Solution The solution to the differential equation \( \sqrt{1 - x^2} \, dy + y \, dx = 0 \) is: \[ y = C e^{-\sin^{-1}(x)} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

xydx+sqrt(1+x^(2))dy=0

The solution of x sqrt(1+y^(2))dx+y sqrt(1+x^(2))dy=0

If y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))) and 0

If y=cos^(-1){x sqrt(1-x)+sqrt(x)sqrt(1-x^(2))} and 0

(x-sqrt(xy))dy=ydx

Solve [2sqrt(xy)-x]dy+ydx=0

ydx+(x-y^(2))dy=0

int_0^1 int_0^sqrt(1+x^2) (dy dx)/(1+x^2+y^2)

Solve the following differential equation: x sqrt(1-y^(2))dx+y sqrt(1-x)dy=0

xy log ydx + (1+x^(2)) dy =0