Home
Class 12
MATHS
(x^(2)-yx^(2))dy+(y^(2)+xy^(2))dx=0...

`(x^(2)-yx^(2))dy+(y^(2)+xy^(2))dx=0`

A

`x+y=log(cxy)`

B

`log((x)/(y))=(1)/(x)-(1)/(y)+c`

C

`log((y)/(x))=(1)/(x)-(1)/(y)+c`

D

`log((x)/(y))=(1)/(x)+(1)/(y)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \((x^2 - yx^2)dy + (y^2 + xy^2)dx = 0\), we will follow these steps: ### Step 1: Rearranging the Equation We start by rewriting the given equation: \[ (x^2 - yx^2)dy + (y^2 + xy^2)dx = 0 \] This can be rearranged to: \[ (x^2(1 - y))dy = -(y^2(1 + x))dx \] ### Step 2: Separating Variables Now, we can separate the variables \(y\) and \(x\): \[ \frac{1 - y}{y^2} dy = -\frac{1 + x}{x^2} dx \] ### Step 3: Integrating Both Sides Next, we integrate both sides: \[ \int \frac{1 - y}{y^2} dy = -\int \frac{1 + x}{x^2} dx \] #### Left Side Integration For the left side: \[ \int \frac{1 - y}{y^2} dy = \int \left( y^{-2} - y^{-1} \right) dy = \left( -\frac{1}{y} - \log |y| \right) \] #### Right Side Integration For the right side: \[ -\int \frac{1 + x}{x^2} dx = -\left( \int x^{-2} dx + \int x^{-1} dx \right) = -\left( -\frac{1}{x} + \log |x| \right) = \frac{1}{x} - \log |x| \] ### Step 4: Combining Results Now we combine the results of the integrations: \[ -\frac{1}{y} - \log |y| = \frac{1}{x} - \log |x| + C \] Where \(C\) is the constant of integration. ### Step 5: Rearranging the Equation Rearranging gives us: \[ -\frac{1}{y} - \frac{1}{x} = \log |x| - \log |y| + C \] This can be rewritten as: \[ -\left( \frac{1}{y} + \frac{1}{x} \right) = \log \left| \frac{x}{y} \right| + C \] ### Final Result Thus, the solution to the differential equation is: \[ -\left( \frac{1}{y} + \frac{1}{x} \right) = \log \left| \frac{x}{y} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

(x^(2)-x^(2)y)dy+(y^(2)+xy^(2))dx=0

Solve: (x^(2)-yx^(2))dy+(y^(2)+x^(2)y^(2))dx=0

The solution of the differential eqaution (x^(2)-yx^(2))(dy)/(dx)+y^(2)+xy^(2)=0 , is

y^(2)dx+(x^(2)+xy+y^(2))dy=0

(x^(2)+xy)dy=(x^(2)+y^(2))dx

The solution of the differential equation y(xy+2x^(2)y^(2))dx+x(xy-x^(2)y^(2))dy=0, is given by

The solutio of the differential equation (x^(2)-xy^(2))(dy)/(dx)+y^(2)+xy^(2) = 0 is

If (y^(3)-2x^(2)y)dx+(2xy^(2)-x^(3))dy=0, then the value of xysqrt(y^(2)-x^(2)), is