Home
Class 12
MATHS
(dy)/(dx)=2y((e^(2x)-e^(-2x))/(e^(2x)+e^...

`(dy)/(dx)=2y((e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)))`

A

`y=c(e^(2x)-e^(-2x))`

B

`y=c(e^(2x)+e^(-2x))`

C

`y=c(e^(4x)-1)`

D

`x=c(e^(y)+e^(-2y))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \[ \frac{dy}{dx} = 2y \left( \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}} \right), \] we will follow these steps: ### Step 1: Separate the variables We can rearrange the equation to separate \(y\) and \(x\): \[ \frac{dy}{y} = 2 \left( \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}} \right) dx. \] ### Step 2: Integrate both sides Now we will integrate both sides. The left side integrates to: \[ \int \frac{dy}{y} = \ln |y| + C_1, \] and for the right side, we need to integrate: \[ \int 2 \left( \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}} \right) dx. \] Let \(t = e^{2x}\), then \(dt = 2e^{2x} dx\) or \(dx = \frac{dt}{2t}\). Substitute \(t\) into the integral: \[ \int 2 \left( \frac{t - \frac{1}{t}}{t + \frac{1}{t}} \right) \cdot \frac{dt}{2t} = \int \left( \frac{t^2 - 1}{t^2 + 1} \right) \frac{dt}{t}. \] This simplifies to: \[ \int \left( \frac{t^2 - 1}{t^2 + 1} \right) \frac{dt}{t} = \int \left( 1 - \frac{2}{t^2 + 1} \right) dt. \] Now we can integrate: \[ \int dt - 2 \int \frac{1}{t^2 + 1} dt = t - 2 \tan^{-1}(t) + C_2. \] ### Step 3: Combine the results Combining the results from both integrals, we have: \[ \ln |y| = t - 2 \tan^{-1}(t) + C, \] where \(C = C_2 - C_1\). ### Step 4: Solve for \(y\) Exponentiating both sides gives: \[ y = e^{t - 2 \tan^{-1}(t) + C} = e^C e^{t - 2 \tan^{-1}(t)}. \] Let \(K = e^C\), then: \[ y = K e^{t - 2 \tan^{-1}(t)}. \] ### Step 5: Substitute back for \(t\) Recall \(t = e^{2x}\): \[ y = K e^{e^{2x} - 2 \tan^{-1}(e^{2x})}. \] ### Final Solution Thus, the solution to the differential equation is: \[ y = K e^{e^{2x} - 2 \tan^{-1}(e^{2x})}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

Solve: (dy)/(dx)=(1)/(sin^(4)x+cos^(4)x) (ii) (dy)/(dx)=(3e^(2x)+3e^(4x))/(e^(x)+e^(-x))

(dy)/(dx)=(e^(2x)+1)/(e^(x))

int(e^(2x)+e^(-2x))/(e^(x)+e^(-x))dx=

(dy)/(dx)=(x+e^(2x))/(y)

int(dx)/(e^(x)+e^(2x))

int (e^(2x) +e^(-2x))/(e^(x)) dx

If y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2x) ),then (dy)/(dx) =

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

e^(y)(dy)/(dx)=e^(x)+x^(2)

The inverse of the function y=(e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)) is/an