Home
Class 12
MATHS
x(1+y^(2))dx+y(1+x^(2))dy=0 at (0, 0)...

`x(1+y^(2))dx+y(1+x^(2))dy=0` at `(0, 0)`

A

`(1+x^(2))(1+y^(2))=0`

B

`(1+x^(2))(1+y^(2))=1`

C

`x^(2)+y^(2)=1`

D

`(1-x^(2))(1-y^(2))=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( x(1+y^2)dx + y(1+x^2)dy = 0 \) at the point \( (0, 0) \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given differential equation: \[ x(1+y^2)dx + y(1+x^2)dy = 0 \] We can rearrange this to express \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = -\frac{x(1+y^2)}{y(1+x^2)} \] ### Step 2: Separate variables Next, we separate the variables \( x \) and \( y \): \[ \frac{y}{1+y^2} dy = -\frac{x}{1+x^2} dx \] ### Step 3: Integrate both sides Now, we integrate both sides: \[ \int \frac{y}{1+y^2} dy = -\int \frac{x}{1+x^2} dx \] For the left side, we can use the substitution \( u = 1 + y^2 \), which gives \( du = 2y dy \) or \( dy = \frac{du}{2y} \): \[ \int \frac{y}{1+y^2} dy = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln |1+y^2| \] For the right side, we can use the substitution \( v = 1 + x^2 \), which gives \( dv = 2x dx \) or \( dx = \frac{dv}{2x} \): \[ -\int \frac{x}{1+x^2} dx = -\frac{1}{2} \int \frac{1}{v} dv = -\frac{1}{2} \ln |1+x^2| \] ### Step 4: Combine the results Combining the results from both integrals, we have: \[ \frac{1}{2} \ln |1+y^2| = -\frac{1}{2} \ln |1+x^2| + C \] Multiplying through by 2 gives: \[ \ln |1+y^2| + \ln |1+x^2| = 2C \] This can be rewritten as: \[ \ln |(1+y^2)(1+x^2)| = 2C \] Exponentiating both sides, we get: \[ (1+y^2)(1+x^2) = e^{2C} = k \quad \text{(where \( k \) is a constant)} \] ### Step 5: Determine the constant using the initial condition To find the constant \( k \), we use the initial condition \( (x, y) = (0, 0) \): \[ (1+0^2)(1+0^2) = k \implies k = 1 \] ### Final Solution Thus, the solution to the differential equation is: \[ (1+y^2)(1+x^2) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

Solve x(1+y^(2))dx-y(1+x^(2))dy=0

x(2y-1)dx+(x^(2)+1)dy=0

Solve the differential eqaution x(1+y^(2))dx-y(1+x^(2))dy=0, given that y=0 when x=1

Solve the differential equation x(1+y^(2))dx-y(1+x^(2))dy=0, given that y=0, when

(ii) Find the particular solution of DE (1+y^2)dx + (1+x^2)dy=0 when x=0, y=0

Solve the differential equation (1+x)(1+y^(2))dx+(1+y)(1+x^(2))dy =0.

The solution of x sqrt(1+y^(2))dx+y sqrt(1+x^(2))dy=0

The solution of the differential equation (1+y^(2)) tan^(-1) x dx + y(1+x^(2)) dy = 0 is

(2x-y+1)dx+(2y-x-1)dy=0