Home
Class 12
MATHS
(dy)/(dx)-e^(x)=ye^(x), when x=0, y=1...

`(dy)/(dx)-e^(x)=ye^(x)`, when `x=0, y=1`

A

`log(1+y)=e^(x)+log2-1`

B

`log(2+y)=e^(x)+log2`

C

`logy=1+e^(x)log2`

D

`log(1+x)+e^(y)+log2=1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx)=2e^(x)y^(3) , when x=0, y=(1)/(2)

(dy)/(dx) -y =e^(x ) " when" x=0 and y=1

(dy)/(dx) = 3^(x+y), " when " x=y=0

(1+e^(x))/(y)(dy)/(dx)=e^(x), when y=1, x=0

(x-y)(1-(dy)/(dx))=e^(x)

The Particular solution of the differential equation (x+1)(dy)/(dx)-2e^(-y)=1 when x=1 , y=0

(dx)/(x)+(dy)/(y)=0 , when x=2, y=3

Solve e^((dy)/(dx))=x+1, given that when x=0,y=3

The solution of the differential equation x(dy)/(dx) = 2y + x^(3)e^(x), where y = 0 when x = 1 is

(x+1)(dy)/(dx) -1 = 2e^(-y) , y=0, " when " x=1