Home
Class 12
MATHS
(dy)/(dx)=2e^(x)y^(3), when x=0, y=(1)/(...

`(dy)/(dx)=2e^(x)y^(3)`, when `x=0, y=(1)/(2)`

A

`4e^(-x)+y^(2)=8`

B

`4e^(x)+y^(2)=8`

C

`4e^(x)+y^(-2)=8`

D

`4e^(y)-x^(-2)=8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \(\frac{dy}{dx} = 2e^x y^3\) with the initial condition \(y(0) = \frac{1}{2}\), we will follow these steps: ### Step 1: Separate the Variables We start by separating the variables \(y\) and \(x\): \[ \frac{dy}{y^3} = 2e^x dx \] ### Step 2: Integrate Both Sides Next, we integrate both sides. The left side integrates to: \[ \int \frac{dy}{y^3} = \int 2e^x dx \] The left side becomes: \[ -\frac{1}{2y^2} \] The right side integrates to: \[ 2e^x + C \] Thus, we have: \[ -\frac{1}{2y^2} = 2e^x + C \] ### Step 3: Rearranging the Equation We can rearrange the equation to isolate \(y^2\): \[ \frac{1}{2y^2} = -2e^x - C \] Multiplying through by -1 gives: \[ \frac{1}{2y^2} = -2e^x + C \] ### Step 4: Solve for \(y^2\) Now, we can solve for \(y^2\): \[ y^2 = \frac{1}{2(-2e^x + C)} \] ### Step 5: Apply the Initial Condition We will use the initial condition \(y(0) = \frac{1}{2}\) to find \(C\): \[ \left(\frac{1}{2}\right)^2 = \frac{1}{2(-2e^0 + C)} \] This simplifies to: \[ \frac{1}{4} = \frac{1}{2(-2 + C)} \] Cross-multiplying gives: \[ 1 = 2(-2 + C) \] Thus: \[ 1 = -4 + 2C \implies 2C = 5 \implies C = \frac{5}{2} \] ### Step 6: Substitute \(C\) Back into the Equation Now we substitute \(C\) back into the equation for \(y^2\): \[ y^2 = \frac{1}{2(-2e^x + \frac{5}{2})} \] ### Step 7: Simplify the Equation This simplifies to: \[ y^2 = \frac{1}{-4e^x + 5} \] ### Step 8: Solve for \(y\) Taking the square root gives: \[ y = \frac{1}{\sqrt{-4e^x + 5}} \] ### Final Solution Thus, the solution to the differential equation is: \[ y = \frac{1}{\sqrt{-4e^x + 5}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

Solve the following initial value problem: (dy)/(dx)=2e^(x)y^(3),y(0)=(1)/(2)

(dy)/(dx) = 3^(x+y), " when " x=y=0

(dy)/(dx) -y =e^(x ) " when" x=0 and y=1

The Particular solution of the differential equation (x+1)(dy)/(dx)-2e^(-y)=1 when x=1 , y=0

(dy)/(dx)+(y+2)/(x+2)=0 , when x=1, y=2

(dx)/(x)+(dy)/(y)=0 , when x=2, y=3

Solution of differential equation y-x(dy)/(dx)=y^(2)+(dy)/(dx), when x=1,y=2, is

Solve (dy)/(dx) = (x+y+1)/(x+y-1) when x = (2)/(3), y = (1)/(3)

Solve the differential equation (dy)/(dx)=1+x+y^(2)+xy^(2) , when y=0 and x=0.

If x^(y)=e^(x-y) then (a) (dy)/(dx) doesn't exist at x=1 (b) (dy)/(dx)=0 when x=1 (c) (dy)/(dx)=(1)/(2) when x=e (d) none of these