Home
Class 12
MATHS
(dy)/(dx)=(y)/(x)+tan((y)/(x))...

`(dy)/(dx)=(y)/(x)+tan((y)/(x))`

A

`cx=sin((x)/(y))`

B

`cx-sin((y)/(x))`

C

`cx=cos((y)/(x))`

D

`(y)/(x).cos((y)/(x))=c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \(\frac{dy}{dx} = \frac{y}{x} + \tan\left(\frac{y}{x}\right)\), we can follow these steps: ### Step 1: Substitution Let \(y = vx\), where \(v\) is a function of \(x\). Then, we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = v + x\frac{dv}{dx} \] ### Step 2: Substitute into the Equation Now, substitute \(y = vx\) into the original differential equation: \[ v + x\frac{dv}{dx} = \frac{vx}{x} + \tan\left(\frac{vx}{x}\right) \] This simplifies to: \[ v + x\frac{dv}{dx} = v + \tan(v) \] ### Step 3: Simplify the Equation Subtract \(v\) from both sides: \[ x\frac{dv}{dx} = \tan(v) \] ### Step 4: Separate Variables Now, we can separate the variables: \[ \frac{dv}{\tan(v)} = \frac{dx}{x} \] ### Step 5: Integrate Both Sides Integrate both sides: \[ \int \frac{dv}{\tan(v)} = \int \frac{dx}{x} \] The left side can be rewritten as: \[ \int \cot(v) \, dv = \int \frac{dx}{x} \] ### Step 6: Integrate The integrals yield: \[ \log|\sin(v)| = \log|x| + C \] where \(C\) is the constant of integration. ### Step 7: Exponentiate Both Sides Exponentiating both sides gives: \[ |\sin(v)| = k|x| \quad \text{where } k = e^C \] ### Step 8: Substitute Back for \(v\) Recall that \(v = \frac{y}{x}\), so we substitute back: \[ |\sin\left(\frac{y}{x}\right)| = k|x| \] ### Final Solution Thus, the solution to the differential equation is: \[ \sin\left(\frac{y}{x}\right) = Cx \] where \(C\) is a constant. ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

The Solution of the differential equation (dy)/(dx)=tan ((y)/(x))+(y)/(x) is

Solve the differential equation : x(dy)/(dx)=x tan((y)/(x))+y

(dy)/(dx)=1+x tan(y-x)

The solution of the differential equation (dy)/(dx)="tan"((y)/(x))+(y)/(x) is

solution of the equation (dy)/(dx)+(1)/(x)tan y=(1)/(x^(2))tan y sin y is

(dy)/(dx)+(y)/(2)sec x=(tan x)/(2y)

If tan ^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a, prove that (dy)/(dx)=(x)/(y)((1-tan a))/((1+tan a))

The solution of the differential of the differential equation (dy)/(dx) = sin (x+y) tan (x+y) -1 is

Solve the differential equation: (i) (1+y^(2))+(x-e^( tan ^(-1)y))(dy)/(dx)=0 (ii) x(dy)/(dx)+cos^(2)y=tan y(dy)/(dx)