Home
Class 12
MATHS
(x(dy)/(dx)-y)e^(y//x)=x^(2)sec^(2)x...

`(x(dy)/(dx)-y)e^(y//x)=x^(2)sec^(2)x`

A

`e^(y//x)=tanx+c`

B

`e^(y//x)tanx=c`

C

`e^(y//x)+tanx=c`

D

`e^(-y//x)+tanx=c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( (x \frac{dy}{dx} - y)e^{\frac{y}{x}} = x^2 \sec^2 x \), we will follow these steps: ### Step 1: Rewrite the equation We start by dividing the entire equation by \( x \): \[ \frac{dy}{dx} - \frac{y}{x} = \frac{x^2 \sec^2 x}{x} e^{-\frac{y}{x}} \] This simplifies to: \[ \frac{dy}{dx} - \frac{y}{x} = x \sec^2 x e^{-\frac{y}{x}} \] ### Step 2: Substitute \( v = \frac{y}{x} \) Let \( v = \frac{y}{x} \). Then, we can express \( y \) as: \[ y = vx \] Now, differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = v + x \frac{dv}{dx} \] ### Step 3: Substitute \( y \) and \( \frac{dy}{dx} \) into the equation Substituting \( y \) and \( \frac{dy}{dx} \) into the equation gives: \[ v + x \frac{dv}{dx} - v = x \sec^2 x e^{-v} \] This simplifies to: \[ x \frac{dv}{dx} = x \sec^2 x e^{-v} \] ### Step 4: Divide both sides by \( x \) Assuming \( x \neq 0 \), we can divide both sides by \( x \): \[ \frac{dv}{dx} = \sec^2 x e^{-v} \] ### Step 5: Separate the variables Now, we can separate the variables: \[ e^v dv = \sec^2 x dx \] ### Step 6: Integrate both sides Integrate both sides: \[ \int e^v dv = \int \sec^2 x dx \] The left side integrates to: \[ e^v = \tan x + C \] ### Step 7: Substitute back for \( v \) Recall that \( v = \frac{y}{x} \), so we substitute back: \[ e^{\frac{y}{x}} = \tan x + C \] ### Final Solution Thus, the solution to the differential equation is: \[ e^{\frac{y}{x}} = \tan x + C \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

(x(dy)/(dx)-y)e^(y//x)=x^(2)cosx , where v=(y)/(x)

using the subsitiution y = vx : (1) (x(dy)/(dx) -y)^(e^(y/x) =x^(2) cos x

(x(dy)/(dx) -y ) sin (y /x) =x^(2)e^(x) , y = vx

e^(y)(dy)/(dx)=e^(x)+x^(2)

x(dy)/(dx)-y=2x^(2)sec x

Solve : (dy)/(dx)=e^(x+y)+x^(2)e^(y)

Solve (dy)/(dx)=e^(x-y)+x^(2)e^(-y) .

(dy)/(dx)=2y((e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)))

(dy)/(dx)=(x^2+e^(x))/(y^2)

Solve: (dy)/(dx)=e^(x-y)+x^2e^(-y)