Home
Class 12
MATHS
General solution of : (dy)/(dx)=sqrt(1-x...

General solution of : `(dy)/(dx)=sqrt(1-x^(2)-y^(2)+x^(2)y^(2))` is

A

`2sin^(-1)y=x sqrt(1-x^(2))+sin^(-1)x+c`

B

`cos^(-1)y=x.cos^(-1)x+c`

C

`sin^(-1)y=(1)/(2).sin^(-1)x+c`

D

`2.sin^(-1)y=x.sqrt(1-y^(2))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To find the general solution of the differential equation \[ \frac{dy}{dx} = \sqrt{1 - x^2 - y^2 + x^2y^2}, \] we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \frac{dy}{dx} = \sqrt{1 - x^2 - y^2 + x^2y^2}. \] We can factor the expression under the square root: \[ \sqrt{(1 - x^2)(1 - y^2)}. \] Thus, we can rewrite the equation as: \[ \frac{dy}{dx} = \sqrt{(1 - x^2)(1 - y^2)}. \] ### Step 2: Separate variables Next, we separate the variables \(y\) and \(x\): \[ \frac{dy}{\sqrt{1 - y^2}} = \sqrt{1 - x^2} \, dx. \] ### Step 3: Integrate both sides Now we integrate both sides: \[ \int \frac{dy}{\sqrt{1 - y^2}} = \int \sqrt{1 - x^2} \, dx. \] The left-hand side integrates to: \[ \sin^{-1}(y) + C_1, \] and the right-hand side can be solved using the formula for the integral of \(\sqrt{a^2 - x^2}\): \[ \int \sqrt{1 - x^2} \, dx = \frac{x}{2} \sqrt{1 - x^2} + \frac{1}{2} \sin^{-1}(x) + C_2. \] ### Step 4: Combine results Combining the results from both integrals, we have: \[ \sin^{-1}(y) = \frac{x}{2} \sqrt{1 - x^2} + \frac{1}{2} \sin^{-1}(x) + C, \] where \(C\) is a constant that combines \(C_1\) and \(C_2\). ### Step 5: Simplify the equation To express the final result clearly, we can multiply through by 2: \[ 2\sin^{-1}(y) = x \sqrt{1 - x^2} + \sin^{-1}(x) + C'. \] ### Final General Solution Thus, the general solution of the given differential equation is: \[ 2\sin^{-1}(y) = x \sqrt{1 - x^2} + \sin^{-1}(x) + C, \] where \(C\) is an arbitrary constant. ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (PREVIOUS YEARS MHT - CET EXAM QUESTIONS)|13 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos
  • CONTINUITY F FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|131 Videos
  • DIFFERENTIATION

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (TEST YOUR GRASP - II : CHAPTER 11)|24 Videos

Similar Questions

Explore conceptually related problems

The solution of (dy)/(dx)=sqrt(1-x^(2)-y^(2)+x^(2)y^(2)) is

The general solution of (dy)/(dx) = 1 - x^(2) -y^(2) + x^(2) y^(2) is

(y)/(x)(dy)/(dx)=sqrt(1+x^(2)+y^(2)+x^(2)y^(2))

General solution of 3x(dy)/(dx)-2y=0 is

General solution of x^(2)(dy)/(dx)+sqrt(4-y^(2))=0 is

x(dy)/(dx)-y=2sqrt(y^(2)-x^(2))

General solution of (dy)/(dx)-(sqrt(1-y^(2)))/(sqrt(1-x^(2)))=0 is

The general solution of (dy)/(dx)=2xe^(x^(2)-y) is

The solution of (dy)/(dx) = (y+sqrt(x^(2) -y^(2)))/x is