Home
Class 12
PHYSICS
A loaded spring vibrates with a period T...

A loaded spring vibrates with a period T. The spring is divided into four equal parts and the same load is divided into four equal parts and the same load is suspended from one end of these parts. The new period is

A

T

B

2 T

C

`T//2`

D

`T//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to understand how the time period of a spring changes when it is divided into parts and how the load is applied. ### Step 1: Understand the original time period of the spring The time period \( T \) of a spring-mass system is given by the formula: \[ T = 2\pi \sqrt{\frac{m}{k}} \] where \( m \) is the mass attached to the spring and \( k \) is the spring constant. ### Step 2: Analyze the situation after dividing the spring When the spring is divided into four equal parts, each part will have a new spring constant. The spring constant \( k' \) of each piece is given by: \[ k' = 4k \] This is because the spring constant is inversely proportional to the length of the spring. When the length is reduced to one-fourth, the spring constant increases by a factor of four. ### Step 3: Determine the new mass The load is also divided into four equal parts. Therefore, if the original mass was \( m \), each part will now have a mass of: \[ m' = \frac{m}{4} \] ### Step 4: Calculate the new time period Now, we can calculate the new time period \( T' \) using the new mass and the new spring constant: \[ T' = 2\pi \sqrt{\frac{m'}{k'}} = 2\pi \sqrt{\frac{m/4}{4k}} = 2\pi \sqrt{\frac{m}{16k}} = 2\pi \frac{1}{4} \sqrt{\frac{m}{k}} = \frac{T}{4} \] Thus, the new time period \( T' \) is one-fourth of the original time period \( T \). ### Conclusion The new period \( T' \) is: \[ T' = \frac{T}{4} \] ### Final Answer The new period is \( \frac{T}{4} \). ---

To solve the problem step by step, we need to understand how the time period of a spring changes when it is divided into parts and how the load is applied. ### Step 1: Understand the original time period of the spring The time period \( T \) of a spring-mass system is given by the formula: \[ T = 2\pi \sqrt{\frac{m}{k}} \] where \( m \) is the mass attached to the spring and \( k \) is the spring constant. ...
Promotional Banner

Topper's Solved these Questions

  • MHT-CET 2016

    NIKITA PUBLICATION|Exercise COMMUNICATION SYSTEMS|1 Videos
  • QUESTION PAPER - MH-CET 2018

    NIKITA PUBLICATION|Exercise MCQ|50 Videos

Similar Questions

Explore conceptually related problems

The time period of a mass suspended from a spring is T. If the spring is cut into four equal parts and the same mass is suspended from one of the parts, then the new time period will be:

The time period of a mass suspended from a spring is T. If the spring is cut into four equal parts and the same mass is suspended from one of the parts, then the new time period will be

The time period of a mass suspended from a spring is T if the spring is cut in to equal part and the same mass is suspended from one of the pert then the time period will be

One body is suspended from a spring of length l , spring constant k and has time period T , Now if spring is divided in two equal parts which are joined in paralled and the same body is suspended from this arrangements then determine new time period.

The time period of a body suspended by a spring be T. what will be the new period, if the spring is cut into two equal parts and when (i) the body is suspended from one part (ii) the body is suspended from both the parts connected in parallel.

A mass m is suspended from a spring of length l and force constant K . The frequency of vibration of the mass is f_(1) . The spring is cut into two equal parts and the same mass is suspended from one of the parts. The new frequency of vibration of mass is f_(2) . Which of the following relations between the frequencies is correct

Draw an angle of measure 155^(@) and divide it into four equal parts.

A mass suspended from a spring of spring constant k is made to oscillate with a time period T. Now, the spring is cut into three equal parts and the mass is suspended from one of the parts. What will be the new time period of oscillations?

A spring has a certain mass suspended from it and its period for vertical oscillation is T. The spring is now cut into two equal halves and the same mass is suspended from one of the halves. The period of vertical oscillation is now

NIKITA PUBLICATION-OSCILLATIONS -MCQ
  1. When a mass m is attached to a spring, it normally extends by 0.2 m . ...

    Text Solution

    |

  2. The force constant of an ideal spring is 200 newton per meter. It is l...

    Text Solution

    |

  3. A loaded spring vibrates with a period T. The spring is divided into f...

    Text Solution

    |

  4. Springs of spring constants k, 2k, 4k, 8k, …… are connected in series....

    Text Solution

    |

  5. A spring having a spring constant k is loaded with a mass m. The sprin...

    Text Solution

    |

  6. A spring has a force constant k and a mass m is suspended from it the ...

    Text Solution

    |

  7. A loaded vertical spring executes simple harmonic oscillations with pe...

    Text Solution

    |

  8. When a body is suspended from two light springs separately, the period...

    Text Solution

    |

  9. A mass is suspended separately by two springs of spring constants k(1)...

    Text Solution

    |

  10. Two particles P and Q describe S.H.M. of same amplitue 'A' and frequen...

    Text Solution

    |

  11. The time periods for vertical harmonic oscillations of the three syste...

    Text Solution

    |

  12. Two spring of each force constant k is connected in series and paralle...

    Text Solution

    |

  13. Two springs of equal lengths and equal cross sectional area are made o...

    Text Solution

    |

  14. A mass on the end of a spring undergoes simple harmonic motion with a ...

    Text Solution

    |

  15. A spring is stretched by 0.20 m , when a mass of 0.50 kg is suspended....

    Text Solution

    |

  16. If a watch with a wound spring is taken on to the moon, it

    Text Solution

    |

  17. The graph between period of oscillation (T) and mass attached (m) to a...

    Text Solution

    |

  18. If a graph is plotted for the square of period (T^(2)) and mass attach...

    Text Solution

    |

  19. A body of mass 1 kg suspended by a light vertical spring of spring con...

    Text Solution

    |

  20. A block of mass 0.5 kg hanging from a vertical spring executes simple ...

    Text Solution

    |