Home
Class 12
MATHS
Prove that |[alpha,beta,gamma] ,[alpha^2...

Prove that `|[alpha,beta,gamma] ,[alpha^2,beta^2,gamma^2] , [beta+gamma, gamma+alpha, beta+alpha]|` = `(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)`

Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    CHHAYA PUBLICATION|Exercise WBJEE ARCHIVE 2012|4 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise WBJEE ARCHIVE 2013|5 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise WBHS ARCHIVE 2015|7 Videos
  • ADJOINT AND INVERSE OF A MATRIX AND SOLUTION OF LINEAR SIMULTANEOUS EQUATIONS BY MATRIX METHOD

    CHHAYA PUBLICATION|Exercise ASSERTION-REASON TYPE|2 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive|13 Videos

Similar Questions

Explore conceptually related problems

Prove that, |{:(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha,alpha+beta):}|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Evaluate: |[alpha, beta,gamma],[alpha^2,beta^2,gamma^2],[beta+gamma,gamma+alpha,alpha+beta]|

|{:(1,alpha,alpha^3),(1,beta,beta^3),(1,gamma,gamma^3):}|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Using properties of determinants in Exercises prove that : {:|( alpha , alpha ^(2) , beta +gamma ),( beta , beta ^(2) , gamma +alpha ),( gamma , gamma ^(2) ,alpha +beta ) |:} =(beta -gamma ) (gamma -alpha ) (alpha -beta ) (alpha +beta +gamma )

|{:(1,alpha,alpha^2),(1,beta,beta^2),(1,gamma,gamma^2):}|=(alpha-beta)(beta-gamma)(gamma-alpha)

Prove that |2 alpha+beta+gamma+delta alphabeta+gammadelta alpha+beta+gamma+delta 2(alpha+beta)(gamma+delta) alphabeta(gamma+delta)+gammadelta(alpha+beta) alphabeta+gammadeltaalphabeta(gamma+delta)+gammadelta(alpha+beta)2alphabetagammadelta|=0

Prove that |{:(betagamma,betagamma'+beta'gamma,beta'gamma'),(gammaalpha,gammaalpha'+gamma'alpha,gamma'alpha'),(alphabeta,alphabeta'+alpha'beta,alpha'beta'):}| =(alphabeta'-alpha'beta)(betagamma'-beta'gamma)(gammaalpha'-gamma'alpha) .

Prove that |((beta+gamma-alpha-delta)^4,(beta+gamma-alpha-delta)^2,1),((gamma+alpha-beta-delta)^4,(gamma+alpha-beta-delta)^2,1),((alpha+beta-gamma-delta)^4,(alpha+beta-gamma-delta)^2,1)|= -64(alpha-beta)(alpha-gamma)(alpha-delta)(beta-delta)(gamma-delta)(gamma-beta)

If alpha, beta, gamma ,are positive acute angles and sin (alpha+beta-gamma)=cos(beta+gamma-alpha)=tan (gamma+alpha-beta)=1 find alpha,beta and gamma .

If alpha,beta,gamma are the roots of a x^3+b x^2+cx+d=0 and |[alpha,beta,gamma],[beta,gamma,alpha],[gamma,alpha,beta]|=0, alpha!=beta!=gamma then find the equation whose roots are alpha+beta-gamma,beta+gamma-alpha , and gamma+alpha-beta .