Home
Class 12
MATHS
If omega is an imaginary cube root of un...

If `omega` is an imaginary cube root of untiy then the value of the determinant
`|{:(1+omega,omega^(2),-omega),(1+omega^(2),omega,-omega^(2)),(omega+omega^(2),omega,-omega^(2)):}|=`

A

`-2omega`

B

`-3omega^(2)`

C

-1

D

0 (zero)

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    CHHAYA PUBLICATION|Exercise WBJEE ARCHIVE 2016|4 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE MAIN (AIEEE) ARCHIVE 2012|2 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise WBJEE ARCHIVE 2014|2 Videos
  • ADJOINT AND INVERSE OF A MATRIX AND SOLUTION OF LINEAR SIMULTANEOUS EQUATIONS BY MATRIX METHOD

    CHHAYA PUBLICATION|Exercise ASSERTION-REASON TYPE|2 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive|13 Videos

Similar Questions

Explore conceptually related problems

If omega is an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^(2),-omega),(1+omega^(2),omega,-omega^(2)),(omega+omega^(2),omega,-omega^(2))| is

If omega is an imaginary cube root of unity, then the value of (1+ omega- omega^(2))(1- omega + omega ^(2)) is-

If omega is an imaginary cube root of unity then the value of (2-omega),(2-omega^(2))+2(2-omega)(3-omega^(2))+....+(n-1)(n-omega)(n-omega^(2)) is

If omega be the imaginary cube root of unity then the value of omega^(241) will be

If omega is an imaginary cube root of unity. Find the value of the expression 1(2- omega)(2-omega^(2))+2(3-omega) +...+ (n-1)(n-omega)(n-omega^(2)) .

If omega is a cube root of unity then the value of |(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)| is -

If omega be an imaginary cube root of 1 then the value of |[1,omega^2,omega],[omega,1,omega^2],[omega^2,omega,1]| is

If omega is a cube root of unity, then find the value of the following: (1+omega-omega^2)(1-omega+omega^2)

If omega is a cube root of unity, then find the value of the following: (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)

If omega is an imaginary cube root of unit,then the value of the expression (1+1/omega)(1+1/omega^2)+(2+1/omega)(2+1/omega^2)+(3+1/omega)(3+1/omega^2) +...+ (n+1/omega)(n+1/omega^2) is