Home
Class 12
MATHS
Let Q=({:(cos""pi/4,-sin""pi/4),(sin""pi...

Let `Q=({:(cos""pi/4,-sin""pi/4),(sin""pi/4, cos""pi/4):})` and `X=({:(1/sqrt(2)),(1/sqrt(2)):})` then `Q^(3)X` is equal to

A

`({:(0),(1):})`

B

`({:(-1/sqrt(2)),(1/sqrt(2)):})`

C

`({:(-1),(0):})`

D

`({:(-1/sqrt(2)),(-1/sqrt(2)):})`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE MAIN (AIEEE) ARCHIVE 2012|2 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise JEE MAIN (AIEEE) ARCHIVE 2013|2 Videos
  • ALGEBRA

    CHHAYA PUBLICATION|Exercise WBJEE ARCHIVE 2015|5 Videos
  • ADJOINT AND INVERSE OF A MATRIX AND SOLUTION OF LINEAR SIMULTANEOUS EQUATIONS BY MATRIX METHOD

    CHHAYA PUBLICATION|Exercise ASSERTION-REASON TYPE|2 Videos
  • ARCHIVE

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive|13 Videos

Similar Questions

Explore conceptually related problems

Let, P=({:(cos""pi/4, -sin""pi/4),(sin""pi/4, cos""pi/4):}) " and " x=({:(1/sqrt(2)),(1/sqrt(2)):}) . Then P^(3)X is equal to-

Let P=(("cos"(pi)/(4),-"sin"(pi)/(4)),("sin"(pi)/(4),"cos"(pi)/(4))) and X=(((1)/(sqrt(2))),((1)/(sqrt(2)))) . Then P^(3)X is equal to

The least positive integer n such that ({:(cos""((pi)/(4)),sin""((pi)/(4))),(-sin""((pi)/(4)),cos""((pi)/(4))):})^n is an identity matrix of order 2 is

int_(0)^((3pi)/(4))(sinxdx)/(1+cos^(2)x)=(pi)/(4)+tan^(-1)((1)/(sqrt(2)))

Evaluate: "sin"pi/4"cos"pi/(12)+"cos"pi/4"sin"pi/(12)

The value of int_(-(pi)/(4))^((pi)/(4)) x^(3) sin^(4) x dx is equal to -

Prove that : "sin"(pi)/(3) "tan"(pi)/(6) +"sin"(pi)/(2) "cos"(pi)/(3) =2 "sin"^(2)(pi)/(4) .

sin ^(2)(pi/6) + cos ^(2)(pi/3) - tan ^(2)(pi/4) =- 1/2

cos^(-1)""(2)/(sqrt(5))+sin ^(-1)""(1)/(sqrt(10))=(pi)/(4)

(i) If sin(pi/2costheta) = cos(pi/2 sin theta) , show that, +- cos(theta + pi/4) =(4n+1)/sqrt(2) where n= any integer. (ii) If tan(pi cos theta) = cot(pi sin theta) , prove that, cos(theta - pi/4) = (2n+1)/(2sqrt(2)), n=0, -1,1,-2,2 ,............