Home
Class 12
MATHS
Prove that lim(x to 00)(ae^(x)+be^(-x))/...

Prove that `lim_(x to 00)(ae^(x)+be^(-x))/(ce^(x)+de^(-x))=(b)/(d)[2ltelt3,d!=0].`

Promotional Banner

Topper's Solved these Questions

  • LIMIT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Multiple Correct Answer Tpye)|5 Videos
  • LIMIT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Integer Answer Tpye)|6 Videos
  • LIMIT

    CHHAYA PUBLICATION|Exercise EXERCISE (Short Answer Type Questions)|25 Videos
  • LAWS OF INDICES

    CHHAYA PUBLICATION|Exercise Long Answer Type Questions|6 Videos
  • LINEAR DIFFERENTIAL EQUATION

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Examination(E. Assertion-Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

Prove that lim_(x rarr oo) (ae^(x)+be^(-x))/(ce^(x)+de^(-x))=(a)/(c)[2ltelt3,c!=0].

Prove that: lim_(x to0)log(1+sinx)/(x)=1

Show that , lim_(x rarr 0)(3^(x)+3^(-x)-2)/(x^(2)

Evaluate: lim_(xtoa)(ae^(x)-xe^(a))/(x-a)

prove that lim_(x rarr 0) (1+2x)^(1/x)=e^(2)

Prove that: lim_(xto0)log(1+2x)/(sin3x)=(2)/(3)

Prove that, lim_(x rarr 0) (5^(x)-4^(x))/(x)=log_(e)((5)/(4))

Prove that: lim_(x rarr 0) (log(1+x)+sinx)/(e^(x)-1)=2

lim_(x to 0)(e^(2x)-1)/(sin 3x) = ?

Prove that lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n .