Home
Class 12
MATHS
Let f(x)=x^(2)(e^(1/x)e^(-1/x))/(e^(1/x)...

Let `f(x)=x^(2)(e^(1/x)e^(-1/x))/(e^(1/x)+e^(-1/x)),x!=0 and f(0)=1` then-

A

`underset(xrarr0+)"lim"f(x)` doesn't exist

B

`underset(xrarr0)"lim"f(x)` doesn,t exist

C

`underset(xrarr0)"lim"f(x)` exist

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    CHHAYA PUBLICATION|Exercise EXAMPLE|38 Videos
  • LIMIT

    CHHAYA PUBLICATION|Exercise IIIustrative Examples|53 Videos
  • LIMIT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Comprehension Types)|5 Videos
  • LAWS OF INDICES

    CHHAYA PUBLICATION|Exercise Long Answer Type Questions|6 Videos
  • LINEAR DIFFERENTIAL EQUATION

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Examination(E. Assertion-Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

f(x)=(e^(1/x)-1)/(e^(1/x)+1) find f^(-1)(x)

int_(0)^(1)e^(2x)e^(e^(x) dx

f(x)=e^x.g(x) , g(0)=2 and g'(0)=1 then f'(0)=

If f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))+2 , then the value of f^(-1)(x) is -

If f (x) =(e^(x) -e ^(-x))/( e ^(x) +e^(-x)) +2, then the value of f ^(-1) (x) is-

Let f(x)=(e^-x)/(1+[x]) , then

int_(1)^(2)((1)/(x)-(1)/(x^(2)))e^(x)dx=e((e)/(2)-1)

Show the function, f(x)={((e^(1//x)-1)/(e^(1//x)+1), "when x" le 0),(0, "when x"=0):} has non-removable discontinuity at x=0

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

The differential of f(x)=log_(e ) (1+e^(10x))-tan^(-1) (e^(5x)) at x = 0 and for dx = 0.2 is