Home
Class 12
MATHS
Prove that , int a^(x) dx = (a^(x))/(lo...

Prove that , ` int a^(x) dx = (a^(x))/(log_(e)a)+ c , ` where ` a gt 0 ` . Does the formula hold for a = 1 ?

Text Solution

Verified by Experts

The correct Answer is:
No
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • IDENFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise Short Answer Type Questions|42 Videos
  • IDENFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise Long Answer Type Questions|15 Videos
  • IDENFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise EXERCISE (Multiple Choice Questions )|14 Videos
  • GENERAL SOLUTIONS OF TRIGNOMETRIC EQUATIONS

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type-|2 Videos
  • INCREASING AND DECREASING FUNCTION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

Prove that: int_(-1)^(1)x|x|dx=0

Prove that : int_1^3(dx)/(x^2(x+1))=(2)/(3)+log(2)/(3) .

Prove that lim_(x to 0) sinx/(log_e (1+x)^(1/2)) = 2

int (e^(x))/(x)(x log x+1)dx

Evaluate : int e^(3 log x)dx

int ((1+log x)^(2))/(x)dx

Evaluate int(x+1)/(x(x+log_(e)x))dx

Prove that int_(0)^(1)(dx)/(1+x^(n))gt1-(1)/(n)"for n"inN

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

Find int(e^(alogx)+e^(xloga))dx, x, a gt 0.