Home
Class 12
MATHS
Prove : int sin mx sin n x dx[ m^(2...

Prove :
` int sin mx sin n x dx[ m^(2) != n^(2)] ` ,
` = 1/2 [ (sin(m-n)x)/(m-n) - (sin (m+n)x)/(m+n) ] + c `

Promotional Banner

Topper's Solved these Questions

  • IDENFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Multiple Correct Answer Type)|5 Videos
  • IDENFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Integar Answer Type)|5 Videos
  • IDENFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise Short Answer Type Questions|42 Videos
  • GENERAL SOLUTIONS OF TRIGNOMETRIC EQUATIONS

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type-|2 Videos
  • INCREASING AND DECREASING FUNCTION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

If m, n in N, lim x tends to 0 '(sin(x^m)/sin(x^n))​' (m, n∈N)=0, lf

sin (n +1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

If int x sin x dx = - x cosx +m , then the value of m is -

If I_n = int sin^n x dx then nI_n - (n - 1)I_(n-2) = f(x)+c where f(x) =

A function f is defined by f(x)=|x|^m|x-1|^nAAx in Rdot The local maximum value of the function is (m ,n in N) (a) 1 (b) m^n.n^m (c) (m^m n^n)/((m+n)^(m+n)) (d) ((m n)^(m n))/((m+n)^(m+n))

The area of the parallelogram formed by the lines y=m x ,y=x m+1,y=n x ,a n dy=n x+1 equals. (a) (|m+n|)/((m-n)^2) (b) 2/(|m+n|) 1/((|m+n|)) (d) 1/((|m-n|))

If int sin^(2) xcos^(2) xdx =(1)/(n) [x-(sin 4x)/(4)]+c then the value of n is-

Prove that: int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx = pi^2

If sin x + cos x = 2 , then the value of sin^(n)x + cos^(n)x will be-

If x+a is a factor of x^2+px+q and x^2+mx+n , show that a= (n-q)/(m-p) ​ .