Home
Class 12
MATHS
If vec(a) , vec (b) and vec (c ) are thr...

If `vec(a) , vec (b) and vec (c )` are three mutually perpendicular vectors of equal magnitude , show that , vectors ` vec (a) , vec (b) , vec (c ) ` make an equal angle with ` vec(a) + vec (b) + vec (c ) `

Promotional Banner

Topper's Solved these Questions

  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Exercise 2A (Choose the correct Question)|8 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Exercise 2A (Very Short aanswer type questions)|35 Videos
  • PROBABILITY

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS|18 Videos
  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Assertion- Reason Type:|2 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec b , and vec c are mutually perpendicular vectors of equal magnitudes, then find the angle between vectors vec a and vec a+ vec b+ vec c dot

If vec a , vec b , vec c are mutually perpendicular unit vectors, find |2 vec a+ vec b+ vec c|dot

vec a , vecb , vec c are three mutually perpendicular unit vectors then |vec a + vec b + vec c| is equal to

If vec a , vec ba n d vec c are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is vec a+ vec b+ vec c b. vec a/(| vec a|)+ vec b/(| vec b|)+ vec c/(| vec c|) c. vec a/(| vec a|^2)+ vec b/(| vec b|^2)+ vec c/(| vec c|^2) d. | vec a| vec a-| vec b| vec b+| vec c| vec c

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c . Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] ; then vec d equally inclined to vec a , vec b and vec c . (a) statement 1 is true but statement 2 is false. (b) statement 2 is true but statement 1 is false. (c)both the statements are true. (d) both the statements are false.

If vec (a), vec(b) and vec ( c) are three vectors of magnitude 3,4 and 5 respectively such that each vector is perpendicular to the sum of the other two vectors , prove that | vec (a) + vec(b) + vec (c ) | = 5 sqrt (2)

If vec(a) , vec(b) and vec (c ) are three unit vectors such that vec(a).vec(b) = vec(a).vec (c )=0 and angle between vec(b) and vec (c ) is pi/6 , prove that , vec (a) = pm 2 ( vec(b) xx vec(c ))

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of | vec a+ vec b+ vec c |

If two vectors vec(a) and vec (b) are such that |vec(a) . vec(b) | = |vec(a) xx vec(b)|, then find the angle the vectors vec(a) and vec (b)

For any two vectors vec(a) and vec(b) , show that | vec (a).vec(b)| le |vec(a)||vec(b)|